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ABSTRACT

Many economic time series exhibit seasonal behaviour. The estimation of
seasonal variation is important problem in time series analysis. Consequently,
seasonal variations are needed to determine and seasonal adjustments are needed in
forecasting. In this thesis, the production series for transformers for the period of
January 2013 to December 2017 are studied.

Stochastic models for monthly production series are found by using Box-
Jenkins model building approach. Basic statistical characteristics for the production
series are first investigated and statistical test for seasonality is applied to each series
to confirm the existence of seasonality. Seasonal variation of the production series for
transformers from January 2013 to December 2017 are measured by using Ratio to
Moving Average Method. Suitable stochastic models for monthly production series
are found by following the three stages of model building, namely, identification,
estimation and diagnostic checking. Whenever needed, computer programs for the
systematic development of the model building procedure are developed. It is found
that ARIMA (1, 0, 0) x (0,1,0),,, ARIMA (1, 0, 0) x (1,1,0);, ARIMA (1, 1, 0) x
(1,1,0);,models are suitable for our series. Forecasting is very important in future
decisions making. The forecast based on the fitted model were also validated in this

thesis in order to support future decision making for planning purpose.
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CHAPTERI
INTRODUCTION

1.1 Rationale of the Study

Manufacturing is the production of merchandise for use or sale using labour
and machines, tools, chemical and biological processing, or formulation. In
Myanmar’s manufacturing sector, the new regulation enacted recently as well as lifted
from the sanction list make the companies require to be more competitive and
overcome the new challenges in many different ways.

The production of transformers from HISEM Co., Ltd are performed as follow:
the drawing design is calculated according to IEC 76/2000 and Core Coil and Tank
Design Extrusion have been produced form with Auto CAD and sent to every
production department. In addition to routine test, each new design of transformer
power rating is finalized with Temperature High Test, Voltage Lighting Evolved Test,
and Portable Sound Test. After testing the passing transformers are tested final QC by
Research and Development Department. After that, they are packed and sent to the
customers as the fixed date.

The products are distributed by the agents in Yangon, the upper Myanmar and
the lower Myanmar. In distributing the products, the price has to be fixed and the
system of distributing needs to be made in terms of the instruction of General
Manager. To have more customer satisfaction, HISEM Co., Ltd give one to five years
guarantee for the transformers.

The production of HISEM Co., Ltd is directly proportional to the demand.
That is why the transformers are produced according to customer’s orders. The
production of transformers is increasing year by year because of transformers are
produced according to international norms, because of producing in local area and the
prices cheap, they send the transformers in time according their requirement.

Among the variety of transformers in HISEM Co., Ltd, four products with

different system voltages were selected. Because of these products are highly

production in every year.



1.2 Objectives of the Study
The objectives of this thesis are-
1. To examine the seasonality in the number of production transformer time
series of HISEM Co., Ltd and to find out the seasonal indexes.
2. To construct a stochastic seasonal time series model and to obtain the forecast
values for the number of production transformer time series of HISEM Co.,

Ltd.

1.3  Method of Study

An analytical method with the support of tables, figures, graphs and plots has
been extensively used in this study. This method is observed to be more suitable to the
nature and characteristics of the observed data series. More emphasis is put on
analytical method of time series analysis and forecasting for the analysis of the data

on the number of production transformer series of HISEM Co., Ltd.

14 Scope and Limitations of the Study

This study is based on the available information from Hitachi Soe Electric and
Machinery Co., Ltd, literatures studies and statistical records from various
publications for statistical analysis. Data used in this study were obtained from
authorized persons of HISEM Co., Ltd and monthly production record. The data for
the study were covered for the period January 2013 to December 2017.

1.5  Organization of the Study

This thesis consists of five chapters. Chapter I introduces rationale of the study,
objectives of the study, method of study, scope and limitations of the study as well as
organization of the study. Chapter II presents the profile of HISEM Co., Ltd and basic
statistical characteristics of production series of HISEM Co., Ltd. Chapter III is
concerned with time series, measuring seasonal variation in a time series by
traditional method and the Box-Jenkins seasonal ARIMA models. Chapter IV
includes the results and findings of seasonality in total number of production series
HISEM Co., Ltd using traditional approach and the Box-Jenkins approach. Chapter V
highlights conclusion, suggestions and further research problems in the case of

seasonality in time series.



CHAPTERII
AN OVERVIEW OF HITACHI SOE ELECTRIC AND MACHINERY CO.,
LTD

2.1 Introduction

Monthly time series over the years display variations over the months as well
as variations over the years. Monthly production series of HISEM Co., Ltd for the
years 2013 to 2017 are shown in Appendix A.

In this chapter, profile of HISEM Co., Ltd and basic statistical characteristics
of production series of HISEM Co., Ltd will be investigated.

2.2 Profile of Hitachi Soe Electric and Machinery Co., Ltd

Soe Electric and Machinery established in 1993 is a major power and
distribution transformer manufacturer, with its Head office & Factory in Yangon,
Myanmar. Head office located at Building No.l, Aung Chan Thar Housing
Estate,East Shwegonedine Rd., Bahan Tsp and Factory situated at Plot No.472, 23™
Quarter, No.(1) Industrial Zone, Dagon Myothit(South), Yangon.First activity is
specified for the scope of Head Office as ‘Sales and Marketing of Electrical
Transformers’. Second activity is specified for the scope of Factory’s activity as
‘Manufacture, Maintenance and Repair Services of Electrical Transformers’. The
plant area site of factory is 40,000m2.

SEM has branch offices in Naypyitaw and Mandalay for customer to provide
sales & service. It also has sister company in Singapore called Soe Trading Co., Ltd,
which has done the trading business on behalf of SEM. SEM holds a large share of
the Myanmar market for distribution transformers in particular. SEM received a Gold
Medal for successful achievement in producing distribution transformers in Industrial
Fair 1996, Yangon, Myanmar and Certificate of Honour from Ministry of Electric
Power for successful major repair achievement of 47 MVA 33/11 KV power
transformer in 2000 and a Gold Medal for outstanding product of 10 MVA 33/11 KV
Power Transformer in Myanmar Industrial Exhibition 2003, Mandalay, Myanmar.

SEM also acquired Certificate of ISO 9001:2000 for QMS in 2005. SEM has
been the first electrical transformer company, which started practicing of ISO
14001:2004 EMS in 2013 and acquired the EMS certificate in 2014.SEM and HIES

technically collaborated for amorphous transformers to produce lower no load losses



transformer in 2013. Finally, Hitachi Group and SEM made the joint ventures in 2015
to fulfill the customers’ current needs.

Hitachi Soe Electric and Machinery Co., Ltd (HISEM) formed by merging the
Hitachi technological innovation of HIES and 23 years of electrical transformer
manufacturing experience of SEM. The paid up capital of HISEM is USD 45 millions.
As for distribution capacity will be 8000 pcs per year and that for power transformers
capacity will be 800,000 KVA per year with different system voltages. The rated
power has been limited from 50 KVA to 30,000 KVA. And then, rated voltage classes
are 6.6 KV, 11 KV, 33 KV and 66 KV. As per HR data, SEM has manpower over 550
staffs. Normal working hours are 8:30 AM to 5:00 PM at HISEM Co., Ltd. The
company is closed on the Sundays.

The outline of business are Manufacturing, Installation, Leasing, Maintenance,
Repair & Sales of Electrical Transformers switchgear and transformer related
accessories. HISEM achieved Asean outstanding engineering achievement award for
year 2015 on the role in the local design and manufacturing of appropriated
technology products in Myanmar. HISEM joined with SMBC Bank, BTMU Bank,
KBZ Bank, CB Bank to satisfy their customer’s payment for transformers. HISEM is
mainly supply to Government Tender Project, System. Improvement Project,
Industrial Zone, Construction.To maintain a competitive edge in such an environment

HISEM continuously tries to improve the quality of what they offer to customers.

2.2.1 Vision, Goal, Mission and Quality Management System of Hitachi Soe
Electric and Machinery Co., Ltd
(a) Vision and Goal

HISEM keeps the vision of endeavouring to be the leading joint venture
transformer manufacturing private company for electrical transformers and related
accessories for the best of our customers. HISEM continuously improve innovative
techniques to meet demand and satisfaction of the customer with respect to time
frame. HISEM work attitude is ‘To make Tomorrow Better than Today’. HISEM is
the unique source for superior transformers combined with high quality, competitive
price and shorter lead times.
(b) Mission

The mission of the company are- conformity with said national and

international quality and standards, manufacturing environment friendly transformer




with bare minimum loss, performing to meet customer demand and satisfaction in full
and fast manner, developing human resources in Myanmar, expanding both domestic
and export business becoming globally standardized management & compliant
company.
(c) Quality Management System

HISEM established and followed International Quality in Product, Service as
well as Environment by complying with ISO 9001, ISO 14001 and GMP.
1) Product Quality and Customer Satisfaction Policy

HISEM is committed to pursue excellence with quality and standard
corresponding to customer needs. HISEM also committed to provide sincere service
and conduct business in compliance with laws and relevant environment, emphasize
conservation of energy and efficient use of natural resources on behalf of customer.
2) GMP Policy

HISEM is committed to provide a safe and clean work environment to all its
employees. Adopting Good Manufacturing Practices is seen as a way of life
throughout the entire company.
A3) Environmental Policy

HISEM recognizes its responsibility towards the care of the environment and
is committed to the avoidance and reduction of waste and pollution within the factory
and, continual improvement of its Environmental Management System. HISEM will
continually seek to reduce the usage of resources within the factory and minimize
discharges that may pollute the environment.

HISEM is committed to comply with any and all applicable legislation and
regulations with respect to the environment.

To ensure the effectiveness of its Environmental Management System,
HISEM has adopted the ISO 14001:2004 and ISO 14001:2015 Standard.

The above policy provides a framework for the setting and reviewing of
environmental objectives and targets is implemented and maintained within the

HISEM’s factory and communicated to all employees.

2.2.2 Organizational Structure of Hitachi Soe Electric and Machinery Co., Ltd

The organizational structure of Hitachi Soe Electric and Machinery Co., Ltd is

shown in Figure 2.1



Figure 2.1 Organization Structure
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As shown in Figure 2.1, corporate organizational structure includes; Board of
Directors are formed as steering committee and two departments are comprised under
Executive Director. These departments are Production department and Non
Production department. There are four departments under Production department,
namely, Technical Development and Support Division, Manufacturing Division, QC
department and Servicing Division. Similarly, six departments are comprised under
Non Production department. These are HR & Admin department, Sales & Marketing
department, Purchasing department, Service Admin department, Finance & Account
department and Store department. Board of director (BODs) are making important
decisions concerns with production plan, budget and targets set by the BODs. The
chairman is making principal decisions regarding the inventory level for each product
item. He is responsible for the overall business management and supervises all the
other employees. Front line managers, supervisors and staffs are the employees lie on
the working floor and deal with routine jobs and upcoming problems involved in daily

basic functions.

23 Basic Statistical Characteristics

In this section, some basic statistics of production series are presented in order
to be able to see their significant variations in a summarized form.

The statistical measure used are the mean, the variance, coefficient of
variation, maximum and minimum production of transformers. These values are
calculated from the monthly series for each month (January to December) over a
number of years and for each year over a number of months.

To calculate these values, we define y;; as the value of the random variables y
during j**month of i*" year and compute,

— 1 .

Vi =;Zj§=1yij ;i=1,2,...,5

= the mean value for i*"year

— 1 :
y] =;Z?=1yl] ;J=1,2,..., 12

= the mean value for j** month

1 _ .
V; =E27=1(}’ij—yl'.)2 ;1=1,2,...,5



= the variance for i*"year

V==LV 5i=12..,12

n-1

= the variance for j** month

CV (i) = Jy—v x 100

= the coefficient of variation for i*"year

C.V () %—V_’ x 100

7
= the coefficient of variation for j®* month

These values enable us to compare the statistical characteristics from month to

month and from year to year.

2.3.1 Production Series for 100 Kilo Volt Ampere

The monthly data of production series for 100 Kilo Volt Ampere are collected
for 5 years, from 2013 to 2017 and presented in Appendix A. Basic statistical
characteristics of this series are investigated from two aspects. Firstly, the basic
statistics for each month over a number of years (5 years) are computed. This enable
us to see the pattern clearly from January to December throughout the year of the
means and variances. Secondly, the basic statistics for each year over a number of
months (12 months) are computed. The pattern over the years of the means and
variances can be seen clearly from these.

Some basic statistics of the production series for 100 Kilo Volt Ampere are

computed for each month and presented in Table (2.1).



Table (2.1)

Basic statistical characteristics for each month: Production series for 100 KVA

Mean Variance Maximum Minimum
Month (Pcs) (Pcs)? CVv (Pcs) (Pcs)
January 27 35.2 21.97 38 20
February 30 29.2 18.01 39 22
March 29 18 14.63 35 24
April 27.2 13.76 13.64 31 21
May 30 33.6 19.32 36 22
June 31.6 53.04 23.05 38 19
July 26.8 16.56 15.18 30 19
August 30.4 29.44 17.85 36 22
September 27.4 29.44 19.80 33 19
October 33.8 49.76 20.87 41 22
November 354 45.44 19.04 42 23
December 34.4 39.04 18.16 42 26

From Table (2.1), it can be seen that the monthly mean values vary from
month to month for this series. For instance, January to May, July and September
have the means which are less than the overall mean 30.25(pcs). The monthly mean is
highest in November with 35.4(pcs) and the lowest in July with 26.8 (pcs). The
variance for each of the months vary from 13.76 (pcs)? to 53.04 (pcs)?and the
coefficient of variations vary from 13.64 percent to 23.05 percent. The coefficient of
variations for June is found to be largest (23.05 %). The maximum value for each
month is the lowest in July and the highest in November and December. The
minimum value for each month is the lowest in June, July and September and the
highest in December. When the mean value for the month is large, the maximum
value and the minimum value of the series are also large. For the hold observed
records, the minimum value of the production series for 100 KVA is 19 (pcs), which
occurs in June, July and September, 2013. Similarly, the maximum value is 42 (pcs),
which occurs in November, 2016 and December, 2015.

The yearly mean value, the variance, the coefficient of variations, maximum
and minimum over the twelve months for each year from 2013 to 2017 of the

production series for 100 KVA are presented in Table (2.2).




Table (2.2)

Basic statistical characteristics for each year: Production series for 100 KVA

Year | Mean (Pcs) | Variance (Pcs)? | C.V | Maximum (Pcs) | Minimum (Pcs)
2013 21.75 4.69 9.95 26 19
2014 27.67 12.22 12.64 34 22
2015 35.42 11.74 9.68 42 30
2016 33.17 28.97 16.23 42 25
2017 33.25 24.35 14.84 40 26

From Table (2.2), it can be seen that the yearly means vary from 21.75(pcs) in

2013 to 35.42(pcs) in 2015. The variance of each year varies from 4.69(pcs)? to

28.97(pcs)?and coefficient of variation for each year lies between 9.68 percent and

16.23 percent.

2.3.2 Production Series for 160 Kilo Volt Ampere

The monthly data of production series for 160 Kilo Volt Ampere are collected

for 5 years, from 2013 to 2017 and presented in Appendix A. Basic statistical

characteristics of this series are computed in the same way as in production series for

100 KVA.
For each month these statistical characteristics are computed and presented in
Table (2.3).
Table (2.3)
Basic statistical characteristics for each month: Production series for 160 KVA
Mean Variance Maximum Minimum

Month (Pcs) (Pcs)? C.Vv (Pcs) (Pcs)
January 22 10.56 14.64 26 18
February 24.2 41.36 26.58 31 12
March 23.2 17.36 17.96 30 17
April 23.8 21.76 19.60 30 17
May 24 31.6 23.42 34 17
June 26.6 59.44 28.98 39 18
July 23 22.8 20.76 28 14
August 24.6 89.04 38.36 40 13
September 24.2 61.76 32.47 34 15
October 28.4 40.24 22.34 39 19
November 29.6 54.64 24.97 40 20
December 30.2 48.56 23.07 38 19




From Table (2.3), it can be seen that the monthly mean values vary from
month to month for this series. For instance, January to May, July to September have
the means which are less than the overall mean 25.33(pcs). The monthly mean is
highest in December with 30.2(pcs) and the lowest in January with 22 (pes). The
variance for each of the months vary from 10.56 (pcs)?to 89.04 (pcs)?and the
coefficient of variations vary from 14.64 percent to 38.36 percent. The coefficient of
variations for August is found to be largest (38.36 %). The maximum value for each
month is the lowest in January and the highest in August and November. The
minimum value for each month is the lowest in February and the highest in November.
When the mean value for the month is large, the maximum value and the minimum
value of the series are also large. For the hold observed records, the minimum value
of the production series for 160 KVA is 12 (pcs), which occurs in February, 2013.
Similarly, the maximum value is 40 (pcs), which occurs in August and November,
2017.

The yearly mean value, the variance, the coefficient of variations, maximum
and minimum over the twelve months for each year from 2013 to 2017 of the

production series for 160 KVA are presented in Table (2.4).

Table (2.4)

Basic statistical characteristics for each year: Production series for 160 KVA

Year | Mean (Pcs) | Variance (Pcs)? | C.V | Maximum (Pcs) | Minimum (Pcs)
2013 16.58 5.91 14.66 20 12
2014 25.08 3091 22.16 37 16
2015 27.58 17.58 15.20 35 21
2016 24 7.83 11.66 28 19
2017 33.42 30.24 16.46 40 24

From Table (2.4), it can be seen that the yearly means vary from 16.58(pcs) in
2013 to 33.42(pcs) in 2017. The variance of each year varies from 5.91(pcs)?to

30.91(pcs)?and coefficient of variation for each year lies between 11.66 percent and

22.16 percent.

2.3.3 Production Series for 400 Kilo Volt Ampere
The monthly data of production series for 400 Kilo Volt Ampere are collected
for 5 years, from 2013 to 2017 and presented in Appendix A. Basic statistical



characteristics of this series are computed in the same way as in production series for

100 KVA.

For each month these statistical characteristics are computed and presented in

Table (2.5).

Table (2.5)
Basic statistical characteristics for each month: Production series for 400 KVA
Mean Variance Maximum Minimum

Month (Pcs) (Pcs)? Cv (Pcs) (Pcs)
January 22 5.84 10.79 25 18
February 28.8 4.96 7.73 32 25
March 27.2 12.16 12.82 33 23
April 24.2 24.56 20.48 30 18
May 26.4 60.24 29.40 36 15
June 28.4 86.64 32.77 38 13
July 25.6 35.44 23.25 34 17
August 26 67.6 31.62 35 12
September 25 69.6 33.37 37 14
October 32 25.2 15.69 38 27
November 34.8 29.36 15.57 42 29
December 31.8 21.76 14.67 38 25

From Table (2.5), it can be seen that the monthly mean values vary from
month to month for this series. For instance, January, March to May and July to
September have the means which are less than the overall mean 27.72(pcs). The
monthly mean is highest in November with 34.8(pcs) and the lowest in January with
22 (pcs). The variance for each of the months vary from 4.96 (pcs)? to
86.64(pcs)?and the coefficient of variations vary from 7.73 percent to 33.37 percent.
The coefficient of variations for September is found to be largest (33.37 %). The
maximum value for each month is the lowest in January and the highest in November.
The minimum value for each month is the lowest in August and the highest in
November. When the mean value for the month is large, the maximum value and the
minimum value of the series are also large. For the hold observed records, the
minimum value of the production series for 400 KVA is 12 (pcs), which occurs in
August, 2013, Similarly, the maximum value is 42 (pcs), which occurs in November,

2017.




The yearly mean value, the variance, the coefficient of variations, maximum
and minimum over the twelve months for each year from 2013 to 2017 of the

production series for 400 KV A are presented in Table (2.6).

Table (2.6)
Basic statistical characteristics for each year: Production series for 400 KVA
Mean . 2 Maximum Minimum
Year (Pcs) Variance (Pcs) C.vV (Pcs) (Pcs)
2013 20.42 42.41 31.90 30 12
2014 24.17 7.14 11.06 29 19
2015 27.33 16.56 14.89 34 22
2016 32.83 23.64 14.81 40 25
2017 33.83 2547 14.92 42 22

From Table (2.6), it can be seen that the yearly means vary from 20.42(pcs) in
2013 to 33.83(pcs) in 2017. The variance of each year varies from 7.14(pcs)?to

42.41(pcs)?and coefficient of variation for each year lies between 11.06 percent and

31.90 percent.

2.3.4 Production Series for 2000 Kilo Volt Ampere

- The monthly data of production series for 2000 Kilo Volt Ampere are
collected for 5 years, from 2013 to 2017 and presented in Appendix A. Basic
statistical characteristics of this series are computed in the same way as in production
series for 100 KVA.

For each month these statistical characteristics are computed and presented in

Table (2.7).




Table (2.7)

Basic statistical characteristics for each month: Production series for 2000 KVA

Mean Variance Maximum Minimum
Month (Pcs) (Pcs)? C.v (Pcs) (Pcs)
January 23 11.36 14.78 29 19
February 21.2 4.56 10.07 25 19
March 21.6 13.04 16.72 26 17
April 22.2 5.36 10.43 26 19
May 23.4 17.84 18.05 28 17
June 22.4 23.04 21.43 30 15
July 22.2 12.56 15.96 28 18
August 20.6 31.04 27.05 25 10
September 24.2 31.36 23.14 32 15
October 26.2 7.36 10.35 29 22
November 32.6 16.24 12.36 36 25
December 27.4 8.64 10.73 30 22

From Table (2.7), it can be seen that the monthly mean values vary from
month to month for this series. For instance, February, March and August have the
means which are less than the overall mean 21.62(pcs). The monthly mean is highest
in November with 32.6(pcs) and the lowest in August with 20.6 (pcs). The variance
for each of the months vary from 4.56 (pcs)?to 31.36(pcs)?and the coefficient of
variations vary from 10.07 percent to 27.05 percent. The coefficient of variations for
August is found to be largest (27.05 %). The maximum value for each month is the
lowest in February and August and the highest in November. The minimum value for
each month is the lowest in August and the highest in November. When the mean
value for the month is large, the maximum value and the minimum value of the series
are also large. For the hold observed records, the minimum value of the production
series for 400 KVA is 10 (pcs), which occurs in August, 2013. Similarly, the
maximum value is 36 (pcs), which occurs in November, 2014.

The yearly mean value, the variance, the coefficient of variations, maximum
and minimum over the twelve months for each year from 2013 to 2017 of the

production series for 2000 KVA are presented in Table (2.8).




Table (2.8)

Basic statistical characteristics for each year: Production series for 2000 KVA

Year | Mean (Pcs) | Variance (Pcs)? | C.V | Maximum (Pcs) | Minimum (Pcs)
2013 18.67 19.22 | 23.49 27 10
2014 23.00 22.67 | 20.70 36 18
2015 25.50 13.08 | 14.18 32 19
2016 25.50 15.25 | 15.31 35 20
2017 26.83 16.47 | 15.13 35 21

From Table (2.8), it can be seen that the yearly means vary from 18.67(pcs) in
2013 to 26.83(pcs) in 2017. The variance of each year varies from 13.08(pcs)?to

22.67(pcs)?and coefficient of variation for each year lies between 14.18 percent and

23.49 percent.



CHAPTER III
THEORETICAL BACKGROUND

31 Time Series

A time series is a set of observation measured at successive points in time or
over successive periods of time. A time series is a sequence of value of some variable
or composite of variables, taken at successive time periods. There are various
objectives for studying time series. They include the understanding and description of
the generating mechanism, the forecasting of future values, and optimal control of a
system. Managers and social scientists often deal with processes that vary over time
observations. A time sequence on such a process is called a time series. Time series
are analysed to understand, describe, control and predict the underlying process. A
time series is a sequence of n observations Y;, ¥,,..., ¥;,..., ¥;, on a process at equally
spaced points in time. A time series consists of a series of observations on a variable
of interest collected sequentially in time. The analysis of time is a necessary technique
in many areas such as industrial research, economics, marketing, physical and
chemical sciences, etc. One of the important aspects of such a series is the dependence
structure of adjacent observation; for the satisfactory analysis of the series, it is
necessary to construct an appropriate stochastic model which can further be used in
various ways, depending on the field of applications.

In time series analysis, it is usually assumed that conditions are the same
during the period for which the time series is analysed. Sometimes, conditions may
change and time series observed during a certain period covers the changing
conditions. The changes may be due to interventions introduced intentionally or
unintentionally. It is usually desired to assertion the effect of interventions from the
time series data. In such a case, direct use of conventional statistical time series covers
the time period with the same condition. For example, a change in the government
policy can be taken as an intervention which can change the level of an economic
indicator. A time series is a collection of observations of well-defined data items
obtained through repeated measurements over time. For example, measuring the value
of retail sales each month of the year would comprise a time series. This is because
sales revenue is well defined and consistently measured at equally spaced intervals.

Data collected irregularly or only once are not time series.



3.2  Components of a Time Series

Time series as defined are discrete time series, because the observations
pertain to separated points in time. There are also continuous time series, where the
variable is measured continuously over time. The analysis of a time series usually
involves a study of the components of the time series, such as the trend, cyclical,
seasonal and irregular components. A model represents the underlying process that
generates a time series. Various models exist to describe a time series. In a model the
actual observations may be considered as a result of combining two components, a
‘true’ process or ‘signal’ and the random process or ‘noise’. In other models, usually
in economics and business, the observations are described by componen‘g/such as
‘trend’ cycle’, ‘seasonal’ and ‘irregular’. The first component is unpredictable
variation, which can be described by a probability distribution with zero mean. In

either case, the process that generates the observation can be described in terms of a

set of significant pattern in time, plus an unpredictable random element.

3.2.1 Trend Component

The trend is the long- term movement in a time series. The trend component
describes the net influence of long term factors. Generally, these factors include: (a)
changes in the size, demographic characteristics, and geographic distribution of the
population, (b) technological improvements, (¢) economic development and (d)
gradual shifts in habits and attitudes. Since these effects tend to operate fairly
gradually and in one direction over long periods of time, the trend component usually
is modelled by a smooth, continuous curve spanning the entire time series. The curve
employed is called the trend curve. A major use of trend analysis is for long-term

forecasting. The trend may either be an upward trend or downward trend.

3.2.2 Cyclical Component

Many variables exhibit a tendency to fluctuate above and below the long-term
trend over a long period of time. These fluctuations are called cyclical fluctuations or
business cycles. Typically, the cyclical component contains cycle of expansion and
contraction that are of uneven duration and amplitude. Some of the factor leadings to
cyclical movements in business and economic time series include buildups and
depletions of inventories, shifts in rate of capital expenditure by businesses, year-to-

year variations in harvests, and changes in governmental monetary and fiscal policy.



Cyclical movements are studied for information on changes in rate of current activity.
This information is used for assessing current conditions and for making short-term

forecast.

3.2.3 Seasonal Component

The seasonal component describes effects that occur regularly over a period of
a year, month, quarter, week or day. Seasonal effects, generally, are associated with
the calendar or the clock. Seasonal effects tend to recur fairly systematically.
Consequently, the pattern of movement in the seasonal components tends to be more
regular than the pattern in the cyclical component and therefore is more predictable,
although sometimes the seasonal pattern undergoes gradual modification. Seasonal
movements are measured so that seasonal effects can be taken into account in
evaluating past and current activities, as well as incorporated into forecast of future

activity.

3.2.4 Irregular Component

The irregular component describes residual movements that remain after the
other components have been taken into account. Irregular movements reflect effects
of unique and nonrecurring factors, such as strikes, unusual weather conditions, and
international arises. In some business and economic time series, the cyclical
component is itself so irregular that any breakdown into separate cyclical and
irregular component would be arbitrary. In such cases, a combined cyclical irregular

component is often developed.

33 Time Series Models

It is convenient to represent the series as a sum of these four components and
one of the objectives may be to break the series of the down into its components, for
individual study. However, in so doing, a model is imposed on the situation. It may be
reasonable to suppose, that trends are due to permanent forces operating uniformly in
more or less the same direction that short- term fluctuations about these long
movements are in same direction.

A mathematical model of a time series may be expressed in functional form.
The relationship is usually described by one of two models: the multiplicative model

and the additive model.



3.3.1 Additive Time Series Model
In an additive time series model, the value of dependent variable Y can be

represented as the sum of four components. Thus, the additive model takes the form

Y = T+S+C+1
Where,
Y =observed value of the variable of interest
[) = trend component
S = seasonal component
C = cyclical component

I = irregular component

In the additive model, each of the four components is measured in the same
units as the dependent variable Y and the components S, C and I are measured as

deviation from the trend value T.

Choose the additive model when the magnitude of the seasonal pattern in the

data does not depend on the magnitude of the data. In other words, the magnitude of

the seasonal pattern does not change as the series goes up or down.

3.3.2 Multiplicative Time Series Models

In a multiplicative time series model the value of dependent variable Y can be

represented as the product of four components. Thus, the multiplicative model takes

the form
Y = TXxSxCxI
Where,
Y =observed value of the variable of interest
T =trend component
S = seasonal component
C = cyclical component
I = irregular component

In the multiplicative model, the trend component is expressed in the same unit
of measure as the dependent variable Y. The other three components are expressed as
percentage deviations from the trend.

Choose the multiplicative model when the magnitude of the seasonal pattern

in the data depends on the magnitude of the data. In other words, the magnitude of the




seasonal pattern increases as the data values increase, and decrease as the data values
decrease.

In the additive model, the deviations from the trend are measured in absolute
terms. In the multiplicative model, the deviations from the trend are measured in

percentages.

3.4  Test of Seasonality

In the study of seasonality, seasonal variation for each month of the year is
usually considered. The following model for the randomized complete block design
(Daniel, W.W and Terre, T.C., 1992) will be used in testing seasonality in monthly
tourist time series.

Vij= wtBityite; s1<i<nl<j<k
Where y;; is a typical value from the overall population,

p is an known constant,

p; represents a yearly effect, reflecting the fact that the experimental unit fell

inthe i year,

Y, represents a monthly effect, reflecting the fact that the experimental unit

received the j** month and

ej;j is a residual component representing all sources of variation other than

months and years.

One make three assumptions when use the randomized complete block design.
(a) Each observed y;; constitutes an independent random variable of size 1 from one
of the kn populations represented. (b) Each of these kn populations is normally
distributed with mean p;; and the same variance 6%. The ¢; ;j are independently and
normally distributed with mean 0 and variance 62. (c) The block and treatment effects
are additive. To state this assumption another way, one say that there is no interaction
between months and years.
In general, one test

Hy: There is no seasonality.

H;: There is a seasonality.

In other words, one test the null hypothesis that the monthly means are all

equal or equivalently, which mean that there are no differences in monthly effects.



To analyse the data, the needed quantities are the total sum of squares SST, the
sum of squares for months SSM, the sum of squares for years SSY and the error sum
of squares SSE. When these sum of squares are divided by the appropriate degree of
freedom, one have the mean squares necessary for computing the F statistic. For
monthly production in HISEM Co., Ltd during (2013-2017) data k=12 and n=5 years.
The degree of freedom are computed as follows:

Total = Months + Years + Error

(kn-1) = (k-1)+ (n-1) + (n-1)(k-1)

Where k= months, n= years

The degrees of freedom for error can be found the following:

(kn-1)-(k-1)-(n-1)  =kn-1-k+1-n+1
= kn-k-n+1
=k(n-1)-(n-1)
= (k-1)(n-1)

Short-cut formulas for computing the required sum of squares are as follows:
2

SSM=X7_171 = C ;y,=2, yy

SSY=31, 2~ ¢ 5 y,=3%, yy

SST = =1 Z j=1 y iy

SSE = SST — (SSM + SSY)
2 .

Where € = Z—k Y. = Xie1 Zja Vij

The results of the calculations for the randomized complete block design are

presented in the following analysis of variance (ANOVA) Table.




ANOVA Table for a Two-Way Analysis of Variance

Source S.S D.F M.S F-Ratio
Between Months | SSM | k-1 MSM = SSM/k-1 F; = MSM/MSE
Between Years | SSY | n-1 MSY =S8SY/n-1 F, =MSY/MSE
Error SSE | (n-1)(k-1) | MSE = SSE/(n-1)(k-1)

Total SST | kn-1

The computed ratios F; with critical values K; =Fg (x—1),n-1)(k—1) 1S then
compared. If this ratios are equal to or exceed the critical values, reject the null

hypothesis.

3.5 Method of Finding Seasonal Variation

Seasonal variation is measured in terms of an index, called a seasonal index. It
is an average that can be used to compare an actual observation relative to what it
would be if there were no seasonal variation. An index value is attached to each
period of the time series within a year. This implies that if monthly data are
considered there are 12 separate seasonal indices, one for each month. There exists
different methods for measuring the seasonal variation of a time series. The methods
have been developed to meet different objectives of estimating seasonal and the
assumed models of the time series. The seasonal pattern itself is important in the
application of these methods since most of the methods assume that the seasonal

pattern is constant or stable.

In finding the index of seasonal variation as seasonal measures, it should be
noted that the index must

(a) Measure all the variation in the series that is seasonal in character, and

(b) Measure nothing but the seasonal variation

A seasonal index thus consists of a series of percentage figures, averaging 100,
which shows the relative level of the series for the various months, quarters or weeks
of the year. An index of seasonal variation can be constructed by expressing each item

in the time series as a percent of the average monthly or quarterly value for the year.



There are many different methods for computation of seasonal index, some of
which are quite accurate and some of which are only appropriate. The following
methods will be discussed in this section.
€y Average percentage method
2) Ratio to moving average method
?3) Link relatives method
4 Ratio to trend method

These methods have been developed to meet different objectives of estimating
seasonals and under the assumed models of the time series. The seasonal pattern itself
is important in the application of these methods since most of the methods assume
that the seasonal pattern is constant or stable. Of these methods, the Ratio to Moving
Average method and the Link Relatives method are simple and which are the most

widely used.

Average Percentage Method

In this method the data for each month are expressed as percentages of the
average for the year. The percentages for corresponding months of different years are
then averaged using either a mean or median. If the mean is used, it is best to avoid
extreme values which may occur.

The resulting 1200 percentages give the seasonal index. If their mean is not

100 % (i.e., if the sum is not 1200). These should be adjusted.

Ratio to Moving Average Method

The measurement of seasonal variation by using the ratio-to-moving-average
method provides an index to measure the degree of the seasonal variation in a time
series. The index is based on a mean of 100, with the degree of seasonality measured
by variations away from the base. The following are the steps for the computation of
the seasonal index by the Ratio to Moving Average method. (Steiner, 1956)

(1) Find the twelve months centered moving averages. This is equivalent to a
moving average of thirteen months with weights i (1,2,2,...,2,2,1).

By finding twelve months centered moving averages, we eliminate the
seasonality, since the seasonal pattern is periodic with a period of twelve months.

Also it will eliminate the random components or irregular movements. Therefore, the



centered twelve month moving averages are the approximates of trend and cyclical
components.

(2) Compute the ratio to moving average values, that is, the original data is
divided by its approximate moving average value. There, the first and last six
months may not be obtained.

By this step, the trend and cyclical components are removed from the original
data and the ratios are the values due to seasonal and random components. They are
called specific seasonals. (Steiner, 1956).

(3) Compute the averages of these ratios referring to the same months.

These averages are the crude seasonal index values.

This step involves two different purposes: the elimination of the random
components and averaging the seasonal relatives referring to the same months.

(4) Adjust the crude seasonal index.

In multiplicative model, the total seasonal index values have to be equal to
twelve (or 1200 percent) for monthly series. Therefore, the crude seasonal index is

adjusted to get a total of twelve (or 1200 percent).

Link Relatives Method

The same assumptions as in ratio to moving average method have to be made
to compute the seasonal index by the link relatives’ method. The following are the
steps for the computation of the seasonal index by the link relatives’ method.

(1) Find the link relatives’ value.

This is to divide the current value by the previous values. Then, the first one
may not be obtained. These values show the relative changes of the consecutive
values.

(2) Find the averages of the link relatives values referring to the same months

These averages show the average changes in consecutive months within the
whole period of twelve months.

(3) Compute the chain relative values by assuming that the chain relative value of
the first month is unity.

The chain relative value for the current month is the product of the chain
relative value of the previous month and the average of link relatives for the current

month. These chain relative values constitute seasonal pattern and the trend within a

year.



(4) Determine the trend component within the year and adjust for the trend
To determine the trend component within a year, the chain relative value of
the first month is computed, that is, the product of the chain value of the last month
and the average of the link relatives for the first month is computed and the difference
between the chain relative value and the setting value unity is found. This difference
is regarded as the trend for twelve months. By dividing this value by twelve, the
difference for a month is obtained, which is assumed to be the coefficient of linear
trend and denoted by A (delta). If value (i-1)A, i=1,2,...,12 are subtracted from the
corresponding chain relative values. Similarly, if the delta is negative, there exists a
downward trend and the respective trend values (i-1) |A|, i=1,2,...,12 are added to the
corresponding chain relative values. After the adjustment, the adjusted chain relative
values are regarded as the crude seasonal index.
(5) Adjust the crude seasonal index
The crude seasonal index is adjusted to get a total of twelve (or 1200 percent)

and the seasonal index is obtained.

Ratio to Trend Method

The following are the steps to compute seasonal index by the method of ratio
to trend.

1 Compute monthly trend values by the method of least squares.

2 Express each original value as the percentage of the corresponding
trend value.

3) Find out the mean percentage for each month.

4) Values obtained in (3) above give seasonal variations. Seasonal index
can be calculated from these mean percentages by expressing them as

percentage of their own average.

3.6 The Box — Jenkins Methodology
The Box — Jenkins methodology has been expressed steps for model

identification, methods of the estimation of the parameters in the ARIMA models,

diagnostic checking and forecasting.



3.6.1 Model Identification

Consider the general ARIMA (p, d, q) model
(-¢,B—..—9,B")1-B)Z, =6, +(1-6,B—..—6,8)a,

Model identification refers to the methodology in identifying the required

transformations such as variance stabilizing transformation and differencing

transformations, the decision to include the deterministic parameter 6, when d > 1

and the proper order of p and q for the model.

The following useful steps are used to identify a tentative model.

Step 1.

Step2.

Plot the time series data and choose proper transformations. In any

time series analysis, the first step is to plot the data. One usually gets a

good idea about whether the series contains a trend, seasonality,

outliers, non-constant variance and other non- normal and non-
stationary phenomena. This understanding often provides a basis for
postulation a possible data transformation.

In time series analysis, the most commonly used transformations are

variance- stabilizing transformations and differencing. Since

differencing may create some negative values, one should always

apply variance stabilizing transformations before taking differences. A

series with non-constant variance often needs a logarithmic

transformation. More generally, to stabilize the variance, one can apply

Box- Cox's power transformation.

Compute and examine the sample ACF and the sample PACF of the

original series to further confirm a necessary degree of differencing.

Some general rules are:

1. If the sample ACF decays very slowly and the sample PACF cuts
off after lag 1 it indicates that differencing is needed. Try taking
the first differencing (1-B)Z,

2. More generally, to remove non-stationary that one may need to
consider a higher order differing (1-B) “Z, for d > 1. In most cases,
d is either, 0,1 or 2. Some authors argue that the consequences of
unnecessary differencing are much less serious than those of under

different.



Step3.

Compute and examine the sample ACF and PACF of the properly

transformed and differenced series to identify the orders of p and q,

where p is the highest order in AR polynomial (1-¢,B—...¢,B”)

and q is the highest order in MA polynomial (1-6,B—..6,B%).

Usually the needed orders of these p and q are less than or equal
to 3.

It is useful and interesting to note that a strong duality exists
between the AR and MA model in terms of their ACFs and PACFs.
To build a reasonable ARIMA model, one need a minimum of # =

50 observations and the number of sample ACF and PACF to be

calculated should be about -Z_, although occasionally for data of

good quality one may be able to identify and adequate model with
a smaller sample size. To identify the order p and q by matching
patterns in the sample ACF and PACF with the theoretical pattern
of known model.

Table (3.1)

Characteristics Behaviour of ACF, PACF for AR, MA and ARMA Process

Process Autocorrelation Partial Autocorrelation
AR (p) Infinite (damped exponentials and / or | Finite
damped since waves).
Tail off according to Spike at lag 1 through p,
p,= ¢, P+ Pygtet ¢p P, then cut off
MA(q) Finite Infinite (dominated by
damped exponentials and
/ or damped sine waves)
Spike at lag 1 through q, then cuts off | Tail off
ARMA(p.q) | Infinte (damped expoentials and / or Infinite (dominated by
damped sine waves after first g-p | damped exponentials
lags). and” or damped sine
waves after first g-p lags)
Irregular pattern at lag 1 through q, | Tail off
then tails off according to
P, = 0P+t +0,0,,

Source: Univariate and Multivariate Methods (William W.S.Wei)




Step4. Test the deterministic trend term 6, when d > 0 for nonstationary

model, (PP(B)(I—B)dZt =6,+0,(B)a, , where the parameter 0, is

usually omitted so that it is capable of representing series with
random changes in the level, slope or trend. However, the differenced
series contains a deterministic trend mean, one can test for its inclusion

by comparing the sample mean # of the differenced series W,= (1-B)*

Z with its approximate standard error S} .

To derive S

lim, nVar(W)= 27 , » and hence,

J=oo

Y - 1 - 1

Where, }/(B)=Z:,’)/KB‘ =o-yBW(B)" is the autocovariance generating function
and r(1) is its value at b = 1. Thus, the variance and hence the standard error for W is

model dependent. For the ARIMA (1, d, 0) model, (I—QB)W =aq,

(1-¢B)(1-B) °Z =2,

w1
(1_¢1B)“/t =a; W (1-¢1B) a,
MA representation, 7, = y(B)a,
|
B) =
YO 1B

Autocovariance generating function is

2

0:._
(1 - ¢1B)(1 - ¢1B-1)

Y(B) = o,y(B)y(B)" =

2

_ o,
Where, B =1, y(1) ———(1 4B)
2 0'2
* n-¢)
Gu (1 ¢I ) (... o-i — 0-2 5
n(l-¢,)’ (I-¢)




ARE)
o 1-¢,

- G_Z{H_PI} C-4=p) (3.2)

n|l-p

The required standard error is

Yo| 1+ P,
Se, = =2 —E£L
" n [l—pﬂlJ G3)

Expression of SW for other models can be derived similarly. However, at the

model identification phase, since the underlying model is unknown, most available

software use the approximation.

~ )
Se. =[ﬁ(1+2,31+2,52+...+2,3kJ | (3.4)
n

w

Where, 770 is the sample variance and f)l, /329-":/31: are the first k significance sample
autocorrelation function of (Wy).

Under null hypothesis 0, = 0; for k > 1

Y0
Se = Y (3.5)

Alternatively, one can include 90 initially and discard it at the final model

estimation if the preliminary estimation result is not significant.

3.6.2 Parameter Estimation

After a model is identified for a given time series it is important to obtain
efficient estimates of the parameters. To obtain the estimate of parameters ¢l, ¢2,--.,
¢p91,92,-.-, 9q, one may use the least squares method since t; can be proved that the least
squares estimates are approximately maximum likelihood estimates in ARIMA

models. If the least squares, method is used, to choose those value of Q' and@’s of the

parameter set which minimize the sum of squared error 2 o af obtained from the

observed time series.
There arises two difficulties in estimation stage:

(1) The equation involve unknown starting values,




(1)  The sum of squared errors function is in general nonlinear in the

coefficients to be estimated.
There are two approaches to (i)

(a) The unknown starting values are simply replaced by some appropriately
assumed values and estimation is conditional on these assumed starting
values.

(b) The estimation is based on estimated starting values from the sample
data. This unconditional approach is more efficient than the conditional
approach. For long series, the difference between the results obtained by

the two approaches is negligible.

Conditional Maximum Likelihood Estimation

For general stationary ARMA (p,q) model,

Z,=0Z +..+¢Z

-p

+a,—6a, ,—..—0a,, (3.6)

Where, Z, =Z, —HMand {a;} are independent identically distributed (i.i.d), N(O, Gj )

white noise,

Joint probability density of a = (aay, . . ., a,)' is given by

n I &
p(%,u,9,0§)= (2no;) AGXP(— 207 gloﬁj (3.7
Rewriting equation (3.6) as
a=0a_+..+0a +Z - O0Z_ —...— ¢pZ¢_p (3.8)

one can note down the likelihood function of the parameter (¢, 1,6,07.).

Let Z = (71, 7>, ...,Zy)" and assume that initial conditions
Zs = (Z1p, Z.1, Zo) and a+ = (ajp, a1, a9)'
The conditional log likelihood function,

: n S.(¢,11,6)
' 6,0)) = -—Ln2no’ ——22"— .
LaL+ (§,46,0;) = -7 Ln2o, 26 (3.9)
Where,
S+(9,1,0)= D.a; (9,11,8/Z.,a.,7) (3.10)
=1

is the conditional sum of squares function.



The quantities of (2), /fl,andé , which maximize equation (3.9) are called the
conditional maximum likelihood estimators.

Since Ln L+ (¢, 14,0,07) involves the data only through S« (¢, 1,0, ) are the same

as the conditional least squares obtained from minimizing the conditional sum of

square function S« (¢, u,6,), which does not contain the parmeter O'z

There are a few alternatives for specifying the initital condition Z+ and a-, based
on the assumptions that {Z,} is stationary and {a,} is as series of i.i.d, N(0, O'g).

The unknown Z; by the sample mean Z and unknown a; by its expected value
of 0, and also assume a, = a,.1 = . . . .= @+1,¢=0 and by using equation (3.6) calculate
a;for t > (P+1)

The conditional sum of square equation (3.10) become

n

S*((p’l’l”e): Z at2(¢=.u36/Z) (3.11)

t=p+1

Which is also the form used by most computer programs.After obtaining the

parameter estimates (]A),,LAL and é, the estimates 02 of 65 is calculated from
52 = S*(9.4.6)
‘ d.f
If equation (3.11) is used to calculate the sum of squares, d.f = (n-p) — (p+q+1)
d.f=n-2ptqtl)
where, the number of degree of freedom d.f equals the number of terms used in the

sum of S+ (¢, u,0) minus the number of parameters estimated.

Unconditional Maximum likelihood Estiation and Backcasting Method

One of the most important functions of a time series model is to forecast the
unknown future value. And then one can back forecast or back cast the unknown
value Z+= (Zy-p, . . . .Z1,7¢)' and a+ = (a;-q, . . . .a1,a9)' needed in the computation of
the sum of squares and likelihood functions.

Any ARMA model can be written in either the forward form.
(1-¢B- ...-q)po )Z,=(1-6B- ...-Gqu)a, (3.13)
Where, BZ, =27

or the backward form,



(1-¢F- ...-¢pr)Z, =(1-6F ...-Gqu)at (3.14)
Where, Fth =74
Because of the stationary equation (3.13) and equation (3.14) should have

exactly the same auto covariance structure. {a;} is a white noise with men zero and

constant variance Oj.{et} is also a white noise with mean zero and constant variance

o..

The forward from equation (3.13) is used to forecast the unknown future values
Zy+j for j>0 base on the data (Z,,Z,, . . ..Z,). The backward form equation (3.14) is

also used to backcast the unknown past value Z;j and hence compute a; for j < 0 based

on the data (Z,, Z,.1, ... .Z1). Estimation, Box and Jenkins (1976) suggest the
following unconditional log likelihood function.
n S(9,11,6)
LnL (¢, u, 0, 6°)=- — Ln2n0” ——=22 3.15
(¢ IJ' a) 2 a 2 T 0-2 ( )
Where, S (¢, 14 ) is the conditional sum of square function given by,
S0, 0)= Y [E@/¢102)] (3.16)

t=-oo

The quantities dA), i and 6 that maximize equation (3.15) are called

unconditional maximum likelihood estimators. Ln L (¢,u,6,a§ ) involves the data

only through S (4 & 6, these unconditional maximum likelihood estimators are

equivalent to the unconditional least square estimators obtained by minimizing

S(4, 1 ).
In practice, equation (3.16) is approximated by a finite form,

S (¢, i, 6)= _2 [E (a,/ ¢, 1.0,2)T

where, M is a sufficiently large integer such that the backcast increment
EZJ g1 02)-EZel/ ¢ 1 6,2)| <g fort<-(M+1).
Condition expectation, E(Z/ ¢ 4, 6 Z) and hence E (a;/ ¢ 4 6 Z) is negligible for

t <- (M + 1). After obtaining the parameter estimate @, ,[L and 0, the estimate

& of @ can be calculated as



For efficiency, the use of backcasts for parameter estimation is important for

seasonal models that are close to be non-stationary, that the series are relatively short.

3.6.3 Diagnostic Checking

Time series model building is an iterative process. It starts with model
identification and parameter estimation. After parameter estimation, one has to assess
model adequacy by checking whether the model assumptions are satisfied. The basic
assumption is that the {a;} are white noise. The ay's are uncorrelated random shocks
with zero mean and constant variance. For any estimated model, the residuals a,'s are
estimates of these unobserved white noise a;'s. Hence, model diagnostic checking is

accomplished through a careful analysis of the residual series (é¢) . Because this

residual series is the product of parameter estimation, the model diagnostic checking
is usually contained in the estimation phase of a time series package.

(1) To check whether the errors are normally distributed, one can construct a

~

at
histogram of the standardized residuals —- and compare it with the standard
a

a

normal distribution using the chi-square goodness of fit test.

2) To check whether the variance is constant, one can examine the plot of
residuals or evaluate the effect of different A value via Box-Cox method.

3) To check whether the residuals are approximately white noise, one can
compute the sample ACF and sample PACF (or IACF) of the residuals to see
whether they do not form any pattern and are all statistically insignificant.
Another useful test is the portmanteau Lack of fit test. This test uses the entire

residual sample ACF’s to check null hypothesis.

Hypothesis Hy: pi=p2 = ... = =0
The residual are not autocorrelated.
H; : The residual are autocorrelated.
Test statistics D Q=n(n+2)Y b, (k) ;Si
Critical value . K= Z(Za,k—m)

Decision Rule : Q>K ; Reject Hy



Otherwise ; Accept Hy
Where, m = the number of parameter estimated in the model. Based on the residual
results, if the model is inadequate, a new model can be easily derived.
3.6.4 Minimum Mean Square Error Forecasts
In forecasting, one objective is to produce an optimum forecast that has no
error or as little error as possible, which leads us to the minimum mean square error
forecast. This forecast will produce and optimum future value with the minimum error

in terms of the mean square error criterion.

Minimum Mean Square Error Forecasts for ARIMA models

Consider the general nonstationary ARIMA (p, d, q) model with d = 0, i.e,
HBY1-B)'Z, =6(B)q, (3.17)
Because the model is stationary, a moving average representation,

Z=yB)q,

=4, +tya_ +y,a,,+.., (3.18)
Where
= . 6(B)
v(B)=) vy B/ =—— (3.19)
,25 ! ¢(B)
And Yy=1.Fort =n+1,
Zon =2V 4, (3.20)
J=0

Suppose that at time t = n one have the observations Z,, Z,;, Z,., ...., Z;and
wish to forecast /-step ahead of future value Z,.; as a linear combination of the

observation Z,, Z,.;, Z,2, .... . Because Z, for t = n, n -1, n-2, ... can all be written in

the form of (3.18), Let the minimum mean square error forecast Zn (DorZ,, be
ZO=vya,+y,,a, ,+y, a _,+.. (3.21)

Where the l[l;are to be determined. The mean square error of the forecast is

A -1 o .
E(Z,, _Zn(l))z = O'jz ‘Vf + sz I:WHj - l,/l+j:l’
=0 =0




- . . - . . *
Which is easily seen to be minimized when V¥, ; =V, Hence,

Z,(D=va,+v,,0,, V0, , +... (3.22)
Using (3.20) and that
E@,,/Z,.2,.,.)=1{,, j>0,

Ea,, ’ 12,2, ,..)=vwa, +Y,ta ,ty,+a, ,+..

Thus, the minimum mean square error forecast of Z,.; is given by its

conditional expectation. That is,
Z,)=HZ,.,12,Z,,,..) (3.23)
2n (/) is usually read as the I-step ahead forecast of Z,.; at the forecast origin

n. The forecast error is

/-1
e,(N=2,,-2,)=Y v,a,,., (3.24)

/=0

Because E (e,(1)| Zt, t <n) =0, the forecast is unbiased with the error variance

-1
Var(e,())=0.) v’ (3.25)
=0
For a normal process, the (1- o ) 100% forecast limits are
Z (DN, |1+ 3 3.26
n( ) % { ; II/] } O.a> ( )
Where ¥ o is the standard normal deviate such that P (N> N o )= % .

There forecast error e,(l) as shown (3.24) is a linear combination of the future
random shocks entering the system after time n. Specifically, the one-step ahead

forecast error is
en (l) = Zn+l _Zn (l) = an+l (3.27)
Thus, the one-step ahead forecast errors are independent, which implies that

2n (/) is indeed the best forecast of Z,.; Otherwise, if one-step ahead forecast errors

are correlated, then one can construct a forecast @,,; of d,,; from the available

CITOIS dp, dp.l, Gn ... and hence improve the forecast of Z,.; by simple using




Z,()+a,,, as the forecast. The forecast error for longer lead times, however, are

correlated. This correlation is true for the forecast errors
eN=2,,-2,0)= a,.. Va,,, vy, a,, (3.28)

And e, )= Ly~ Zn—j = Ay TGt v Y0, (3.29)
Which are made at the same lead time / but different origins n and n-j for j<I. It is

also true for the forecast errors for different lead time made from the same time origin.

Minimum Mean Square Error Forecasts for ARIMA Models

Consider the general nonstationary ARIMA (p, d, q) model withd % 0, i.e.,

ABX1-B)'Z =&B)q, (3.30)

Where g(B)=(1-B - ....- & B?)isa stationary AR operator and 6(B) = (1-6,B
- ... - 84B") is an invertible MA operator, respectively. Although for this process the
mean and the second-order moments such as the variance and the autocovariance
functions vary over time. The complete evolution of the process is completely
determined by a finite number of fixed parameters. The forecast of the process as the
estimation of a function of these parameters and obtain the minimum mean square
error forecast using a Bayseina argument. Using this approach with respect to the
mean square error criterion, which corresponds to a squared los function, when the
series is known up to time n, the optimal forecast of Z,.; is given by its conditional
expectation E (Z,+;| Z,, Zy.;....). The minimum mean square error forecast for the
stationary ARMA model discussed is, of course, a special square case of the forecast
for the ARIMA (p,d,q) model with d = 0.

To derive the variance of the forecast for the general ARIMA model, the

model] at time 7+/ in an AR representation that exists because the model is invertible.

Thus, BV, =4, (3.31)
S ,_ ¢(B)Y(1- B)*
Where n(B)=1-) n B =———" (3.32)
,2: ! 6(8)
Equivalently, Z,=Y ®,Z,  +a, (3.33)
j=1

Apply the operator, 1+1+¥B+..+¥, jB -




-1

o [—]
to(3.33)and obtain Y ¥ W7,  +> ¥a,, =0 (3.34)

J=0 k=0 /=0
where mp = - 1and F=L. It can be shown that
co  [—| s {1
2 Tz, =Lt Y, Y T, WL, L, (3.35)
j=0 k=0 m=1 i=0
Choosing ¥ weights Z n, V=0 form = 1,2, ... , -1 (3.36)
=0
oo /-1
Z =277+ ¥a,, (3.37)
J=1 1=0
-1
Where, =% (3.38)
=0
Thus, given Z; fort <n
Z,(0)=E(Z,,/Z,1<n)
=>r,0Z,,., (3.39)
j=1

Because E (a,+;/ Z; ,t <n) =0 for j > 0. The forecast error is

e = Zui- Z,(0)

/-1
=S ¥a,, (3.40)
j=0

Where the ‘Ij weights, by (3.36) can be calculated recursively from the m; weights as

follow.
j-1
'Pj= n, W j=1,...,1 -1 (3.41).

J-i i
i=0

3.7 Seasonal Time Series Models

In this section, seasonal time series are discussed. These models were
developed by Box and Jenkins (1976) and have been successfully applied to many

time series with seasonal variation.




3.7.1 The Seasonal Autoregressive Process of Order P, SAR (P)

The seasonal autoregressive process of order P(1) if s is the number or
observation per seasonal period then the order of the AR process is an integer multiple
of s and (2) the non-zero coefficents are those with subscripts that are an integer
multiple of s.

The SAR (P) model is

2= Oy sHDBoslpast * * + OQps Zyps + @y (3.42)

Where, P is the largest multiple of s presented in the model. To provide special

notation for the seasonal model, and so if we let

Djs = Dy (3.43)
So that Equation (3.42) become,
Zi =012+ OsZiogt Oy Zyps + ay (3.44)

referred to as seasonal AR process of order P. the seasonal autoregressive model in

equation (3.44) expresses the current value of the process Z; as finite weighted sum of

P previous values Z;., Z, 5, ... ... , Zs.ps of the process plus random shock a,.
Here, Ela] =0 for all t.
Vla] =E[a’]=0}2 for all t, and
Covia, ar] =Ela, as]=0 forallt#t'

The Autoregressive Function of SAR (P) Process is
Ve = O1Ypest Ooppps+ - - - + DQpYips; k=1,2,....Ps (3.45)
The autocorrelation function (ACF) satisfies the difference equation.
Pk = @1ps + Doyz+ - -+ + Oppps; k=1,2,...,Ps (3.46)
The autocorrelation function (ACF) will be non-zero only lags that are integer
multiples of s. The autocorrelation at seasonal lags persists indefinitely, although with

declining intensity.

The First Order Seasonal Autoregressive SAR (1) Process
Consider the SAR (1) model (P=1)

' Z, =0z + a;

Where, a, 's are random shocks satisfying with usual assumptions.

The autocorrelation function of the SAR (1) process is obtained by

substituting P=1 in Equation (3.45).



The Autocovariance Function is
Ve = O1Ys s k=12,....Ps

The autocovariance function of the SAR (1) process is

Oq
k=0
1- 0
Y= v
D"y 1k=s,2s,3s, ...
0 ;k=0,s,2s, 3s, ...

The autocorrelation function of the SAR (1) process is,

1 k=0
Prk= (I)lk s k=s,2s,3s, ...
0 1 k#0,s,2s,3s, ...

Therefore, the autocovariance and the autocorrelation are non-zero at lags that

are integer multiples of s.

The Second Order Seasonal Autoregressive SAR (2) Process
Consider SAR (2) model (P=2)
Zi = O Zp+ O3Z,05+a
where, ar are random shocks satisfying with usual assumptions. The

autocovariance function of the SAR (2) model is obtained by substituting P=2 in
Equation (3.45).

The Autocovariance Function is
Vi = O1Ys T DoYios 1 k=12,....Ps

Therefore, the autocovarinance function of the SAR (2) process is

— rl - (DZW O'az
2- 2 ,'k =(
1+ q);J (1- ©)* O,
C o )
,K =S
\_1 Y Yo
Yk= T s (I)[Z
+ @ k=2s
- @, 2 Yo
NG
D yps + Doyps k=3s,4s, ...

— 0 k=0,s,2s,3s, ...




The autocorrelation function of the SAR (1) process is,

— 1 k=0
O} k=s
1 -0,
Pk =_< @12
+®, k=2s
1-®,
D1pis + Dopr-2s :k=3s, 4s, ...
_ 0 k#0,s,2s,3s, ...

Therefore, the autocovariance and the autocorrelation function are non-zero at

lags that are integer multiple of s.

3.7.2 General Multiplicative Seasonal Models

The fundamental fact about seasonal time series with period s, is that
observation which are is intervals apart are similar. Therefore, one might expect that
the operation B*X; = X5 would play a particularly important role in the analysis of

seasonal series, and furthermore, since nonstationarity is to be expected in the series
X,, Xis, Xts, ..., the simplifying operation V, X, =(1-B") X, =X, - X might be
useful.

The seasonal effect implies that an observation for a particular quarter, say,
second quarter, is related to the observation for second quarters of previous years.
Suppose the " observation X, is for the second quarters. We might be able to link this
observation X; to observations in second quarters of previous years by a model of the
form

S\ODVv S
DB’V X, =6(B")o,
Where s = 12, for monthly series and s = 4 for quarterly series. V, = 1-B’ and

¢(BS), (D(BS) are polynomials in BS of degrees P and Q, respectively, and satisfying
invertibility conditions. Similarly, a model

DB’)VsX,, =08,

might be used to link the current behavior for first quarter with previous first quarter

observations, and so on, for each of the first quarters. Moreover, it would usually be




reasonable to assume that the parameters @ and © contained in these monthly
models would be approximately the same for each quarter. Now the error components
o, O, ... in these models would not in general be uncorrelated. For example, the
value in last quarter, 2000, while related to previous last quarter values, would also be
related to value in first, second and third quarters of 2000 etc. Thus we would expect
that would be related to oy and o etc. Therefore, to take care the such relationships,

we introduce a second model

¢B)V'c, =6(B)a,
where no a; is a white noise process, and ¢ (B) and 6 (B) are polynomials in B of

degrees p and q, respectively, and satisfying stationary and invertible conditions and
V=V, =1B
We finally obtain a general multiplicative model
OB, (BHV'VX, =6,(B)0,(B") 2,
Where for this particular example, s = 12 for monthly series and s = 4 for quarterly
series. Also the subscripts p, P, q, Q have been added to remind the orders of the
various operators. The resulting multiplicative process will be said to be of order

(p.d,q) x (P,D,Q)s. A similar argument can be used to obtain models with three or

more periodic components to take care of multiple seasonalities.

3.7.3 ACF and PACF for Seasonal Models

In identifying seasonal time series, the standard ACF analysis is still the most
useful method. ACF and PACEF for seasonal models are more complicated. In general,
the season and nonseasonal autoregressive components have their PACF cutting off at
the seasonal and nonseasonal lags. On the other hand, the seasonal and nonseasonal
moving average components produce PACF which shows exponential decays and / or

damped sine waves at the seasonal and nonseasonal lags.

3.7.3 Model Building and Forecasting for Seasonal Models
For identification, estimation and diagnostic checking of model of seasonal
data, no new principles are needed to do this, but merely and application of procedure

and ideas we have already discussed in detail for non-seasonal data.



The most important aspect in the conduct of time series analysis is the use of
past and present data or available observations to predict future values. The use
available observations at time “t” to predict or forecast values at some future time
“t+L” can serve many purpose of economic and business planning. The short term
forecasts will be performed by using adequately fitted model based on the results of
model building. The actual values will also be applied for the validation of the
forecast values of forecasting period.

Because seasonal models are special forms of the ARIMA described in
sections 3.6, the model identification, parameter estimation, diagnostic checking and

forecasting for these models follow the same general methods introduced in section

3.6.1,3.6.2,3.6.3 and 3.6.4.



CHAPTER IV
RESULTS AND FINDINGS

The seasonal variation of production series in HISEM Co., Ltd from January
2013 to December 2017 is measured by seasonal index. The analysis is done by the

Ratio to Moving Average method.

4.1 Test of Seasonality
Test of seasonality for monthly production series from January 2013 to

December 2017 are calculated in the following.

Production series for 100 Kilo Volt Ampere
The result of calculation for testing the seasonality in the production series for
100 KVA (2013-2017) are shown in Table (4.1).
Table (4.1)
ANOVA Table for Production Series for 100 KVA (2013-2017)

Source of Sum of Degree of Mean Square F-Ratio
variation square Freedom Error
Between Months 498.85 11 4535 41151
Between Years 1477.5 4 369.375
Error 484.9 44 11.0205
Total 2461.25 59

At 5% level of significance, the critical value K= F(g ¢5,11,44) 15 2.01. Since the
computed F-value = 4.1151 is greater than K= 2.01, it can be calculated that the

monthly data of production series for 100 KVA exists seasonality.

Production series for 160 Kilo Volt Ampere

The result of calculation for testing the seasonality in the production series for

160 KVA (2013-2017) are shown in Table (4.2).




Table (4.2)
ANOVA Table for Production Series for 160 KVA (2013-2017)

Source of Sum of Degree of Mean Square F-Ratio
variation square Freedom Error
Between Months 399.73 11 36.34 2.2529
Between Years 1785.67 4 446.42
Error 709.93 44 16.13
Total 2895.33 59

At 5% level of significance, the critical value K= F(g ¢5,11,44) is 2.01. Since the

computed F-value = 2.2529 is greater than K= 2.01, it can be calculated that the

monthly data of production series for 160 KVA exists seasonality.

Production series for 400 Kilo Volt Ampere

- The result of calculation for testing the seasonality in the production series for

400 KVA (2013-2017) are shown in Table (4.3).

Table (4.3)
ANOVA Table for Production Series for 400 KVA (2013-2017)

Source of Sum of Degree of Mean Square F-Ratio

variation square Freedom Error
Between Months 721.38 11 65.58 4.36
Between Years 1555.6 4 388.9
Error 661.20 44 15.03
Total 2938.18 59

At 5% level of significance, the critical value K= Fg g5,11,44) is 2.01. Since the

computed F-value = 4.36 is greater than K= 2.01, it can be calculated that the monthly

data of production series for 400 KVA exists seasonality.

Production series for 2000 Kilo Volt Ampere

The result of calculation for testing the seasonality in the production series for

2000 KVA (2013-2017) are shown in Table (4.4).




Table (4.4)
ANOVA Table for Production Series for 2000 KVA (2013-2017)

Source of Sum of Degree of Mean Square F-Ratio
variation square Freedom Error
Between Months 631.4 11 57.4 6.18
Between Years 503.07 4 125.77
Error 408.93 44 9.29
Total 1543.4 59

At 5% level of significance, the critical value K= F ¢s,11,44) 1s 2.01. Since the
computed F-value = 6.18 is greater than K= 2.01, it can be calculated that the monthly

data of production series for 2000 KVA exists seasonality.

4.2 Seasonal Variation

The seasonal variation of monthly production series from 2013 to 2017 are

computed by the ratio to moving averages method.

Production Series for 100 Kilo Volt Ampere (2013-2017)

The seasonal variation of monthly production series from 2013 to 2017 is
computed by the ratio to moving average method under multiplicative decomposition
of time series. The series consists of 60 observations and it was shown in Appendix A.
The results of seasonal index are shown in Table (4.5). The lowest value of seasonal
index is in September and the highest is in November. The months of February, June,
October and December have the larger seasonal indexes than other months. The peak
period is November with the seasonal index of production series as 113 % while

September the lowest month with 87%.




Table (4.5)
Seasonal Indexes for production series for 100 KVA by using the Ratio to
Moving Average Method (2013-2017)

Month Seasonal Index
January 95
February 105
March 99
April 92
May 98
June 108
July 89
August 99
September 87 .
October 106
November 113
December 109

Production Series for 160 Kilo Volt Ampere (2013-2017)

The seasonal variation of monthly production series from 2013 to 2017 is
computed by the ratio to moving average method under multiplicative decomposition
of time series. The series consists of 60 observations and it was shown in Appendix A.
The results of seasonal index are shown in Table (4.6). The lowest value of seasonal
index is in August and the highest is in December. The months of February, June,
October and November have the larger seasonal indexes than other months. The peak
period is December with the seasonal index of production series as 114 % while

August the lowest month with 87%.




Table (4.6)
Seasonal Indexes for production series for 160 KVA by using the Ratio to
Moving Average Method (2013-2017)

Month Seasonal Index
January 93
February 108
March 98
April 97
May 96
June 105
July 93
August 87
September 92
October 107
November 110
December 114

Production Series for 400 Kilo Volt Ampere (2013-2017)

The seasonal variation of monthly production series from 2013 to 2017 is
computed by the ratio to moving average method under multiplicative decomposition
of time series. The series consists of 60 observations and it was shown in Appendix A.
The results of seasonal index are shown in Table (4.7). The lowest value of seasonal
index is in September and the highest is in November. The months of February,
March, June, October and December have the larger seasonal indexes than other
months. The peak period is November with the seasonal index of production series as

124 % while September the lowest month with 82%.




Table (4.7)
Seasonal Indexes for production series for 400 KVA by using the Ratio to
Moving Average Method (2013-2017)

Month Seasonal Index
January 86
February 103
March 100
April 88
May 99
June 109
July 90
August 90
September 82
October 116
November 124
December 113

Production Series for 2000 Kilo Volt Ampere (2013-2017)

The seasonal variation of monthly production series from 2013 to 2017 is
computed by the ratio to moving average method under multiplicative decomposition
of time series. The series consists of 60 observations and it was shown in Appendix A.
The results of seasonal index are shown in Table (4.8). The lowest value of seasonal
index is in August and the highest is in November. The months of January, May, June,
October and December have the larger seasonal indexes than other months. The peak
period is November with the seasonal index of production series as 136% while

August the lowest month with 82%.




Table (4.8)
Seasonal Indexes for production series for 2000 KVA by using the Ratio to
Moving Average Method (2013-2017)

Month Seasonal Index
January 101
February 89
March 92
April 93
May 100
June 96
July 95
August 82
September 94
October 109
November 136
December 113

4.3 The Box-Jenkins Seasonal ARIMA Model of Production Series for 100
KVA
The monthly data of production series for 100 KVA covers 5 years, from

January, 2013 to December 2017. The series consists of 60 observations.

4.3.1 Identification
For the identification of the order p and g, the (autocorrelation function) ACF
and (partial autocorrelation function) PACF of the number of production series for

100 KVA are computed and plotted as shown in the following Tables and Figures.



Table (4.9)

Estimated Autocorrelation Function for the original series of Production for 100

Kilo Volt Ampere
Py for {Z,} Z =30.25 S, =6.459 n=60
Lagk 1 2 3 4 5 6 7 8 9 10 11 12

1.17 643 503 376 378 307 390 252 .193 134 268 294 345
SE 126 125 124 123 122 120 .119 118 117 116 115 114
1324 161 081 045 053 024 052 -071 -062 -067 -067 -108 -.102
sp 112 111 110 109 .108 .106 .105 .104 102 .101 .100 .098

Figure (4.1)
Sample Autocorrelation Function for Monthly Production Series for 100 Kilo
Volt Ampere

100 KVA
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Table (4.10)
Estimated Partial Autocorrelation Function for the original series of Production

for 100 Kilo Volt Ampere

Byox. for {Z,} 7 =30.25 S, = 6.459 n=60

Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 643 153 007 .165 -.017 .233 -182 -038 .010 .239 .106 .038

GE 129 129 129 129 129 129 129 129 129 129 129 .129
13-24 -254 -103 069 -101 -028 .001 -063 .109 -070 -206 -061 .024
SE 129 129 129 129 129 129 129 129 129 129 129 .129




Figure (4.2)

Sample Partial Autocorrelation Function for Monthly Production Series for 100

Kilo Volt Ampere
100 KVA
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The sample ACF decays slowly and the sample PACF has a single large spike
at lag 1. These values indicated that the series is nonstationary and that differencing is
called for. To remove nonstationary, the series is seasonal differenced and the sample
ACF and PACF of the seasonal differenced series (1-B1?)Z, were computed as shown

in Table (4.11) and Table (4.12). They were displayed in Figure (4.3) and Figure (4.4).

Table (4.11)
Estimated Autocorrelation Function for Seasonal First Difference Series of

Production for 100 Kilo Volt Ampere

py for {W, = (1—B2)z,} W=287 S, =5659 n=48
Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 424 266 299 297 .069 .163 248 018 -.059 .188 224 -123

S.E 140 138 137 135 134 132 131 129 127 126 124 122
13-24 028 017 -029 -041 .060 .021 -159 -065 .04 -071 -219 -211
S.E 121 119 117 115 114 112 110 108 106 104 .102 .100




Figure (4.3)
Sample Autocorrelation Function for Seasonal First Difference Series of

Production Series for 100 Kilo Volt Ampere
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Table (4.12)
Estimated Partial Autocorrelation Function for Seasonal First Difference Series

of Production for 100 Kilo Volt Ampere

@y for (W, = (1—-B?)2,} W=287 §,=05659 n=48
Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 424 105 .189 129 -172 135 128 -205 -062 229 127 -327
S.E 144 144 144 144 144 144 144 144 144 144 144 144
13-24 096 -105 .079 102 -183 .064 -041 -040 .017 -054 -174 -213
S.E 144 144 144 144 144 144 144 144 144 144 144 144




Figure (4.4)
Sample Partial Autocorrelation Function for Seasonal First Difference Series of

Production Series for 100 Kilo Volt Ampere
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The sample ACF is slowly decay and the sample PACF cuts off after lag 1
because none of the sample PACF value is significant expect that lag 12.
The suggested series (1-B*2)Z, might be described by SAR (1) process as a
tentative model for the series
Since W = 2.87, §,,=5.659, n= 48

2.87
= 5559, — = 3.5136
Vag

Which is significant and thus deterministic trend 6, is needed. Hence, the tentative

The t value of t = SWW
e

model for the series following SAR(1) process:
(1-®B¥)Z,= 0, + a,

4.3.2 Parameter Estimation for SAR (1) model
Using SAR (1) model, the estimated parameters with their statistics were
shown in Table (4.13). According to this table, the estimated parameter of @ is 0.525,

since their p-value is 0.000, there is evidence to reject the null hypothesis: @ = 0.



Table (4.13)
Estimated Parameters and Model Statistics for SAR(1) Model of Production

Series for 100 KVA
Estimate SE t Sig.
Constant 29.413 1.318 22.321 0.000
)] 0.525 0.122 4315 0.000

The following estimated model was obtained
(1-0.525B12)Z,= 29.413 + a,
(0.122)

The estimation of the SAR (1) model of production series for 100 KVA give
8y = 29.413 with estimated standard error 1.318 and ® = 0.525 with the estimated
standard error 0.122. Under the null hypothesis Hy: ® = 0 the test statistics t is 4.315

(1.318)

with p-value is 0.000. Hence, there is evidence to reject the null hypothesis.

Moreover, the sample ACFs and the sample PACFs of residual for the above

tentative model were shown in Table (4.14) and (4.15), respectively. They were

showed in Figure (4.5) and (4.6).

Table (4.14)
Estimated Autocorrelation Function of Residual for SAR(1) Model of Production
Series for 100 KVA
Lag k 1 2 3 4 « 15 6 7 8 9 10 11 12
1-12 620 483 411 372 253 287 220 091 .001 .136 .123 -.008
S.E 129 172 193 207 218 223 229 232 233 233 234 235
13-24 -031 -076 -102 -.108 -.108 -.097 -234 -190 -.165 -190 -231 -223
S.E 235 236 236 .237 237 .238 239 243 245 247 249 253




Figure (4.5)

——

Sample Autocorrelation Function of Residual values for SAR(1) Model of
Production Series for 100 KVA
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Table (4.15)

Estimated Partial Autocorrelation Function of Residual for SAR(1) Model of
Production Series for 100 KVA
Lag k 1 2 3 4 5 6 7 8 9 10 1" 12
1-12 620 .160 .100 .085 -089 .147 -053 -160 -.092 249 .034 -226
S.E A29 0 129 129 129 129 129 129 129 129 129 129 129

13-24 -034 -073 .073 -045 -139 110 -152 063 -091 -.062 -012 -068
S.E 129 129 129 129 129 129 129 129 129 129 129 129




Figure (4.6)
Sample Partial Autocorrelation Function of Residual values for SAR(1) Model of
Production Series for 100 KVA
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The Sample ACF was exponential decay and the sample PACF cuts off after lag
1 and these model exhibit a pattern. So, the residual series are not white noise process.
Since, another tentative seasonal ARIMA (1, 0, 0) x (1,1,0),, model considered, that
is

(l_q)BIZ)Zt: 90 + (1 - (Z)B)at

Using multiplicative seasonal ARIMA (1, 0, 0) x (1,1,0),, model, the estimated
parameters with their statistics were shown in Table (4.16). According to this table,
the estimated parameter of @ is 0.568 since their p-value is 0.000, there is evidence to
reject the null hypothesis: @ = 0 and the estimated parameter of @ is -0.378, since
their p-value is 0.011, there is evidence to reject the null hypothesis: ® = 0.

Table (4.16)
Estimated Parameters and Model Statistics for seasonal ARIMA (1, 0, 0) x
(1,1, 0)4, Model of Production for 100 KVA

Estimate SE i Sig.

Constant 2.880 1.217 2.367 0.022
1) 0.568 0.131 4.350 0.000

) -0.378 0.143 -2.642 0.011

3 pacrF
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4.3.3 Diagnostic Checking

To check model adequacy, in Table (4.17) and Table(4.18) was shown the
residual ACF and PACF of the modified model. They were shown in Figure (4.7) and
(4.8), along with the confidence interval.

- ye(@) £ 25 Elye(@,)]
Where,

= 1
S.Elye(a,)] = 7

Table (4.17)
Estimated Autocorrelation Function of Residual for seasonal ARIMA (1, 0, 0) x
(1,1, 0),, Model of Production for 100 KVA

Lag k 1 2 3 4 5 6 7 8 9 10 1" 12
1-12 -048 014 000 207 -096 .133 .161 -047 -198 229 .256 -.051

S.E 144 145 145 145 151 152 154 158 158 163 .170 .178
13-24 037 -029 -046 -006 .035 .093 -.180 -.062 077 .081 -066 -.166
S.E 178 178 178 178 178 179 180 .183 .184 .184 185 .186




Figure (4.7)
Sample Autocorrelation Function of Residual values for seasonal ARIMA (1, 0, 0)

x (1,1, 0)42 Model of Production for 100 KVA
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Table (4.18)

Estimated Partial Autocorrelation Function of Residual for seasonal ARIMA

1,0,0)x (1,1,0),, Model of Production for 100 KVA

Lag k 1 2 3 4 5 6 7 8 9 10 1" 12
1-12 --048 012 .001 .207 -079 .128 479 -084 -186 .184 270 -.026

S.E 144 144 144 144 144 144 144 144 144 144 144 144
13-24 035 -150 -073 .078 -151 049 -058 -058 .049 .027 -077 -.244
S.E 144 144 144 144 144 144 144 144 144 144 144 144




Figure (4.8)
Sample Partial Autocorrelation Function of Residual values for seasonal ARIMA

(1,0,0) x (1,1,0)12 Model of Production for 100 KVA
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Values of the residual ACF of seasonal ARIMA (1, 0, 0) x (1,1,0),, are all
small and exhibit no patterns. And, the values of residual PACF of modified model lie
inside the confidence limits. This suggested that this model adequate. Hence, the
autocorrelation of @; can be taken as significant different from zero.

An overall check is performed by using the test statistic,

Q=nX{-17k (@)

As the result of p value, the observed value of Q is 16.864 and it is not
significant at 5 % significant level p-value is 0.394.

Thus, the fitted seasonal ARIMA (1, 0, 0) x (1,1,0),, model is judged adequate

for the series.

4.4 The Box-Jenkins Seasonal ARIMA Model of Production Series for 160

KVA
The monthly data of production series for 160 KVA covers 5 years, from

January, 2013 to December 2017. The series consists of 60 observations.
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4.4.1 Identification
For the identification of the order p and g, the (autocorrelation function) ACF
and (partial autocorrelation function) PACF of the number of production series for

160 KVA are computed and plotted as shown in the following Tables and Figures.

Table (4.19)
Estimated Autocorrelation Function for the original series of Production for 160
Kilo Volt Ampere
Py for {Z,} 7Z =25.33 S, =7.005 n=60
Lag k 1 2 3 4 5 6 7 8 9 10 11 12

1-12 656 687 450 466 .354 .308 .165 .149 .098 .081 .019 -.048

S.E 126 125 124 123 122 120 119 118 117 116 115 114
13-24 -019 -065 -076 -077 -026 .025 .039 .030 034 015 .065 .087
S.E 112 111 110 109 108 .106 .105 .104 .102 .101 .100 .098

Figure (4.9)
Sample Autocorrelation Function for Monthly Production Series for 160 Kilo

Volt Ampere

160 KVA
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Table (4.21)

Estimated Autocorrelation Function for Seasonal First Difference Series of

Production for 160 Kilo Volt Ampere

i for {W, = (1—B®)Z,} W =421 S, =8098 n=48

Lag k 1 2 3 4 5 6 7 8 9

10 11 12

1-12 426 412 286 312 239 112 -069 -.0256 -.042
S.E 140 138 137 135 134 132 131 129 127
13-24 -152 -237 -132 -154 -100 -.107 -025 -1156 -.010
SE 121 119 117 115 114 112 110 108 106

-077 -194 -.442
126 124 122
-125 -103 -.105
104 102 100

Figure (4.11)

Sample Autocorrelation Function for Seasonal First Difference Series of

Production Series for 160 Kilo Volt Ampere
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Table (4.22)
Estimated Partial Autocorrelation Function for Seasonal First Difference Series

of Production for 160 Kilo Volt Ampere

Byy for (W, = (1 -B?Z3} W=421 S5, =8098 n=48

Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 426 282 .053 129 031 -124 -247 -006 .029 -029 -113 -.400

S.E 144 144 144 144 144 144 144 144 144 144 144 144
13-24 -225 -008 .090 .132 .035 -154 -152 -081 .114 -097 -203 -225
S.E 144 144 144 144 144 144 144 144 144 144 144 144

Figure (4.12)
Sample Partial Autocorrelation Function for Seasonal First Difference Series of

Production Series for 160 Kilo Volt Ampere
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The sample ACF is damped sine wave and the sample PACF cuts off after lag
1 because none of the sample PACF value is significant expect that lag 12.
The suggested series (1-B?)Z, might be described by SAR (1) process as a
tentative model for the series
Since_W = 4.21, §,,=8.098, n= 48

4.21

The t value of t = 57— = gg55— = 3.6018
/v /s




Which is significant and thus deterministic trend 8, is needed. Hence, the tentative

model for the series following SAR(1) process:
(l'q)Blz)Zt: 90 + a;

4.4.2 Parameter Estimation for SAR (1) model |
Using SAR (1) model, the estimated parameters with their statistics were
shown in Table (4.23). According to this table, the estimated parameter of @ is -0.103,

since their p-value is 0.559, there is no evidence to reject the null hypothesis: @ = 0.

Table (4.23)
Estimated Parameters and Model Statistics for SAR(1) Model of Production
Series for 160 KVA
Estimate SE t Sig.
Constant 25.344 0.874 29.002 0.000
d -0.103 0.175 -0.587 0.559

The following estimated model was obtained

(1+ 0.103B'%)Z,= 25.344 + a,

(0.175) (0.874)
The estimation of the SAR (1) model of production series for 160 KVA give , =
25.344 with estimated standard error 0.874 and ® = —0.103 with the estimated
standard error 0.175. Under the null hypothesis Hy: @ = 0 the test statistics t is -0.587
with p-value is 0.559. Hence, there is no evidence to reject the null hypothesis.

Moreover, the sample ACFs and the sample PACFs of residual for the above

tentative model were shown in Table(4.24) and (4.25), respectively. They were

showed in Figure (4.13) and (4.14).




Table (4.24)
Estimated Autocorrelation Function of Residual for SAR(1) Model of Production
Series for 160 KVA

Lag k 1 2 3 4 5 6 7 8 9 10 11 12

1-12 661 591 453 473 363 .328 A92 179 127 116 065 .023
S.E 129 177 207 223 239 248 255 258 260 261 262 .262
13-24 022 -031 -058 -059 -012 .042 043 .041 .039 .027 .078 .098
S.E 262 262 262 262 262 262 263 263 263 263 263 .263

Figure (4.13)
Sample Autocorrelation Function of Residual values for SAR(1) Model of
Production Series for 160 KVA
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Table (4.25)

Estimated Partial Autocorrelation Function of Residual for SAR(1) Model of
Production Series for 160 KVA

Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 661 273 -.023 .192 -062 -007 -135 .011 .013 -011 .003 -.062

sE 129 129 129 129 129 129 129 129 A29 129 129 129
13-24 058 -102 -045 .052 .088 138 -.024 .008 -034 -086 .094 .047
S.E 429 129 129 129 129 129 129 129 129 129 128 129
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Figure (4.14)
Sample Partial Autocorrelation Function of Residual values for SAR(1) Model of
Production Series for 160 KVA
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The Sample ACF was exponential decay and the sample PACF cuts off after lag
1 and these model exhibit a pattern. So, the residual series are not white noise process.
Since, another tentative seasonal ARIMA (1, 0, 0) x (1,1,0),, model considered, that
is

(l'q)Blz)th 90 + (1 - (Z)B)at

Using multiplicative seasonal ARIMA (1, 0, 0) x (1,1,0),, model, the estimated
parameters with their statistics were shown in Table (4.26). According to this table,
the estimated parameter of @ is 0.451 since their p-value is 0.002, there is evidence to
reject the null hypothesis: ¢\= 0 and the estimated parameter of @ is -0.651, since
their p-value is 0.000, there is evidence to reject the null hypothesis: @ = 0.

Table (4.26)
Estimated Parameters and Model Statistics for seasonal ARIMA (1, 0, 0) x
(1,1, 0);;Model of Production for 160 KVA

Estimate SE t Sig.
Constant 3.063 1.002 3.057 0.004
1) 0.451 0.135 3.331 0.002
o -0.651 0.129 -5.068 0.000
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4.4.3 Diagnostic Checking

To check model adequacy, in Table (4.27) and Table (4.28) was shown the
residual ACF and PACF of the modified model. They were shown in Figure (4.15)
and (4.16), along with the confidence interval.

Yi(@e) + 2S Elyr(a)]
Where,

S-Elyk(@)] = —=

4 -

Table (4.27)
Estimated Autocorrelation Function of Residual for seasonal ARIMA (1, 0, 0) x
(1,1,0),, Model of Production for 160 KVA

Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 -17 210 035 .234 141 021 -069 .052 .122 .033 -.061 -214

SE 144 146 152 153 160 163 .163 .163 .164 .165 .166 .166
13-24 099 -159 -109 -102 -013 -046 -.014 -182 167 -.160 .025 -.225
S.E A72 173 176 177 178 178 179 179 183 186 .189 .189

Figure (4.15)
Sample Autocorrelation Function of Residual values for seasonal ARIMA (1, 0, 0)

x (1,1, 0)1, Model of Production for 160 KVA

1.0
.5+ ?
(=1
s 2
< =
2 L :
'cEn 0.0 oy g = gy — .g
ar E :- " (=
e =
I—A

0.5

-1.0 T T

T 1T T 7T ¥ % ] T L3 L L L] LI ¥ T T T T ¥ T T
1 2 3 4 S 6 7 & @ 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24
Lag

ACF
— L
——LCL



Table (4.28)
Estimated Partial Autocorrelation Function of Residual for seasonai ARIMA

1,0,0)x (1,1,0);, Model of Production for 160 KVA

Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 117 199 .083 217 .188 -022 -179 -070 .100 .077 -029 -.278

SE 144 144 144 144 144 144 144 144 144 144 144 144
1324 -041 -143 -135 085 .161 027 -009 -178 .178 -048 -033 -198
SE 144 144 144 144 144 144 144 144 144 144 144 144

Figure (4.16)

Sample Partial Autocorrelation Function of Residual values for seasonal ARIMA

1,0,0)x (1,1,0), Model of Production for 160 KVA
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Values of the residual ACF of seasonal ARIMA (1, 0, 0) x (1,1,0),, are all

small and exhibit no patterns. And, the values of residual PACF of modified model lie

inside the confidence limits. This suggested that this model adequate. Hence, the

autocorrelation of @; can be taken as significant different from zero.

An overall check is performed by using the test statistic,

Q=n Z';ﬁ=1 YIE (&t)

As the result of p value, the observed value of Q is 16.184 and it is not

significant at 5 % significant level p-value is 0.440
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Thus, the fitted seasonal ARIMA (1, 0, 0) x (1,1,0),, model is judged adequate

for the series.

4.5 The Box-Jenkins Seasonal ARIMA Model of Production Series for 400
KVA
The monthly data of production series for 400 KVA covers 5 years, from

January, 2013 to December 2017. The series consists of 60 observations.

4.5.1 Identification
For the identification of the order p and q, the (a\\utocorrelation function) ACF
and (partial autocorrelation function) PACF of the number of production series for

400 KVA are computed and plotted as shown in the following Tables and Figures.

Table (4.29)
Estimated Autocorrelation Function for the original series of Production for 400
Kilo Volt Ampere
Py for {Z,} Z =27.72 S, =7.057 n=60

Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 B75 533 457 .428 370 .327 .298 .307 .239 .241 270 .415

S.E 126 125 .124 123 122 120 119 118 117 116 115 114
13-24 279 151 201 172 .097 .074 .021 054 -.020 -052 .008 .043
s 112 A1 110 109 .108 .106 .105 .104 102 .101 .100 .098




Figure (4.17)

Sample Autocorrelation Function for Monthly Production Series for 400 Kilo

Volt Ampere
400 KVA
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Table (4.30)
Estimated Partial Autocorrelation Function for the original series of Production

for 400 Kilo Volt Ampere

Byx for {Z,} 7 =27.72 S, =7.057 n=60

Lag k 1 2 3 4 5 6 7 8 9 10 11 12

1-12 675 143 097 110 .010 .021 .028 .082 -077 .070 .097 .306
S.E 129 129 129 129 129 129 129 129 129 129 128 129
13-24 -265 -192 198 -095 -133 .037 -.085 .038 -069 -.044 113 -.105
S.E 129 129 129 129 129 129 129 129 129 129 129 129

— Lower Confidernce Linit



Figure (4.18)

Sample Partial Autocorrelation Function for Monthly Production Series for 400

Kilo Volt Ampere
400 KVA
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The sample ACF decays slowly and the sample PACF has a single large spike
at lag 1. These values indicated that the series is nonstationary and that differencing is
called for. To remove nonstationary, the series is seasonal differenced and the sample
ACF and PACF of the seasonal differenced series (1-B'%)Z, were computed as shown
in Table (4.31) and Table (4.32). They were displayed in Figure (4.19) and Figure
(4.20).

Table (4.31)
Estimated Autocorrelation Function for Seasonal First Difference Series of

Production for 400 Kilo Volt Ampere

py for (W, = (1-B*®Z,} W =335 S, =4.601 n=48
Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 342 210 -155 -182 -078 -140 -030 -015 .034 .066 -209 -.276

S.E 140 138 137 135 134 132 131 129 127 126 124 122
13-24 -151 -028 .149 -019 -062 -156 -174 -074 -051 -050 .172 .120
S.E A21 119 117 115 114 112 110 108 106 104 102 100




Figure (4.19)

Sample Autocorrelation Function for Seasonal First Difference Series of

ACF
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Table (4.32)

Estimated Partial Autocorrelation Function for Seasonal First Difference Series

of Production for 400 Kilo Volt Ampere

Bup for (W, = (1 -B?)Z,} W=335 S, =4601 n=48

Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 342 106 -293 -088 122 -167 -.025 071 -019 002 -299 -211
S.E 144 144 144 144 144 144 144 144 144 144 144 144
13-24 202 003 -084 -154 -132 -103 -.154 -056 .074 -229 .034 -.055
144 144 144 144 144 144 144 144 144 144 144 144

S.E




Figure (4.20)
Sample Partial Autocorrelation Function for Seasonal First Difference Series of

Production Series for 400 Kilo Volt Ampere
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The sample ACF is damped sine wave and the sample PACF cuts off after lag
1 because none of the sample PACF values is significant expect that lag 3-and 11
The suggested series (1-B1%)Z, might be described by SAR (1) process as a
tentative model for the series
Since_W = 3.35, §,,=4.601, n= 48

3.35
V48

The t value of t = SWW
fvw

Which is significant and thus deterministic trend 6, is needed. Hence, the tentative
model for the series following SAR(1) process:
(1-©B?)Z,= 0, + a,

4.5.2 Parameter Estimation for SAR (1) model
Using SAR (1) model, the estimated parameters with their statistics were
shown in Table (4.33). According to this table, the estimated parameter of @ is 0.708,

since their p-value is 0.000, there is evidence to reject the null hypothesis: © =%.



Table (4.33)
Estimated Parameters and Model Statistics for SAR(1) Model of Production

Series for 400 KVA
Estimate SE t Sig.
Constant 27.454 1.912 14.358 0.000
D 0.708 0.109 6.513 0.000

The following estimated model was obtained
(1-0.708B12)Z,= 27.454 + a,
(1.912)

(0.109)
The estimation of the SAR (1) model of production series for 400 KVA give

6y = 27.454 with estimated standard error 1.912 and ® = 0.708 with the estimated
standard error 0.109. Under the null hypothesis Hy: ® = 0 the test statistics t is 6.513

with p-value is 0.000. Hence, there is evidence to reject the null hypothesis.

Moreover, the sample ACFs and the sample PACFs of residual for the above

tentative model were shown in Table (4.34) and (4.35), respectively. They were

showed in Figure (4.21) and (4.22).

Table (4.34)
Estimated Autocorrelation Function of Residual for SAR (1) Model of
Production Series for 400 KVA

Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 653 542 372 .286 .280 .194 .185 143 056 .037 -076 -.102
S.E A29 176 202 213 219 225 228 230 .232 .232 232 232

13-24 -038 -018 .106 .054 .020 -001 -054 -011 -015 -019 .084 .052
S.E 233 233 233 234 234 234 234 235 235 235 235 235




Figure (4.21)
Sample Autocorrelation Function of Residual values for SAR(1) Model of
Production Series for 400 KVA
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Table (4.35)

Estimated Partial Autocorrelation Function of Residual for SAR(1) Model of
Production Series for 400 KVA

Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 653 202 -076 .009 .137 -075 .028 .014 -125 006 -.131 -.047
S.E A28 129 129 129 129 129 129 129 129 129 129 129

13-24 177 032 146 -069 -101 .005 -.042 013 .023 -061 .161 -.003

S.E A28 129 129 129 129 129 129 129 129 129 129 129




Figure (4.22)
Sample Partial Autocorrelation Function of Residual values for SAR (1) Model
of Production Series for 400 KVA
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The Sample ACF was exponential decay and the sample PACF cuts off after lag
1 and these model exhibit a pattern. So, the residual series are not white noise process.
Since, another tentative seasonal ARIMA (1, 0, 0) x (0,1,0);, model considered, that
is
(1-B¥)Z= 0y + (1 — 0B)a,

Using multiplicative seasonal ARIMA (1, 0, 0) x (0,1,0),, model, the estimated

parameters with their statistics were shown in Table (4.36).

Table (4.36)
Estimated Parameters and Model Statistics for seasonal ARIMA (1, 0, 0) x
(0,1, 0)42 Model of Production for 400 KVA

Estimate SE t Sig.
Constant 3.314 0.952 3.482 0.001
1) 0.345 0.140 2.460 0.018




The following estimated model was obtained
(1-B'?)Z,=3.314 + (1 — 0.345B)a,
(0.952) (0.140)
According to Table (4.36), it can be seen that the estimated parameter of @ is
0.345. Since their p-value of 0.018, there is evidence to reject the null hypothesis:

9=0.

4.5.3 Diagnostic Checking
To check model adequacy, in Table (4.37) and Table (4.38) was shown the

residual ACF and PACF of the modified model. They were shown in Figure (4.23)
and (4.24), along with the confidence interval.

V(@) % 25 Elyw(@e)]
Where,

4

SElve(@n] = =

Table (4.37)
Estimated Autocorrelation Function of Residual for seasonal ARIMA (1, 0, 0) x
(0,1,0),; Model of Production for 400 KVA

Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 -030 .195 -200 -147 .041 -139 029 -019 .028 .153 -187 -193

S.E 144 144 150 155 158 158 .161 .161 .161 .161 .164 .169
13-24 --080 -036 203 -070 -012 -111 -138 -024 -026 -091 .197 -020
S.E 473 174 174 479 479 179 181 183 183 183 .184 .188




Figure (4.23)

Sample Autocorrelation Function of Residual values for seasonal ARIMA (1, 0, 0)

Residual ACF

x (0,1, 0)4, Model of Production for 400 KVA
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Table (4.38)

Estimated Partial Autocorrelation Function of Residual for seasonal

ARIMA (1,0, 0) x (0,1, 0),, Model of Production for 400 KVA

lagk 1 2 3 4 5 6 7 8 9 10 11 12
1.17 -030 194 -197 -202 130 -120 -090 .056 008 100 -204 -.310
SE 144 144 144 144 144 144 144 144 144 144 144 144
13.24 093 046 013 -111 -128 -085 -175 -154 .115 -176 .005 -092
SE 144 144 144 144 144 144 144 144 144 144 144 144
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Figure (4.24)
Sample Partial Autocorrelation Function of Residual values for seasonal ARIMA

(1, 0,0)x (0,1, 0),, Model of Production for 400 KVA
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Values of the residual ACF of seasonal ARIMA (1, 0, 0) x (0,1,0),, are all
small and exhibit no patterns. And, the values of residual PACF of modified model lie
inside the confidence limits except at lag 12. This suggested that this model adequate.
Hence, the autocorrelation of @; can be taken as significant different from zero.
An overall check is performed by using the test statistic,
Q= n“Z’;ﬁ=1 Yic (@y)
As the result of p value, the observed value of Q is 17.754and it is not
significant at 5 % significant level p-value is 0.405
Thus, the fitted seasonal ARIMA (1, 0, 0) x (0,1,0),, model is judged adequate

for the series.

4.6 The Box-Jenkins Seasonal ARIMA Model of Production Series for 2000

KVA
The monthly data of production series for 2000 KVA covers 5 years, from

January, 2013 to December 2017. The series consists of 60 observations.
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4.6.1 Identification
For the identification of the order p and q, the (autocorrelation function) ACF
and (partial autocorrelation function) PACF of the number of production series for

2000 KVA are computed and plotted as shown in the following Tables and Figures.

Table (4.39)
Estimated Autocorrelation Function for the original series of Production for
2000 Kilo Volt Ampere
Py for {Z,} Z =23.90 S, =5.115 n=60

Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 524 388 165 133 122 215 .127 .007 .051 .169 .302 .385

S.E 126 125 124 123 122 120 119 118 117 116 115 114
13-24 250 .023 -109 .021 -.014 .103 .003 -060 -041 .003 .154 .146
SE 112 111 110 109 108 106 105 .104 102 .101 .100 .098

Figure (4.25)
Sample Autocorrelation Function for Monthly Production Series for 2000 Kilo

Volt Ampere

2000 KVA
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Table (4.40)
Estimated Partial Autocorrelation Function for the original series of Production
for 2000 Kilo Volt Ampere

By, for {Z,} Z =23.90 S, =5.115 n=60
Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 524 157 -140 072 .083 149 -087 -164 164 240 .157 .098
S.E 129 129 129 129 129 129 129 129 .129 129 129 .129
13-24 -137 -218 -114 225 -089 .021 -046 -026 .109 -.181 .076 .051
S.E 429 129 129 129 129 129 129 129 .129 129 .129 .129

Figure (4.26)
Sample Partial Autocorrelation Function for Monthly Production Series for 2000
Kilo Volt Ampere
2000 KVA
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The sample ACF decays slowly and the sample PACF has a single large spike
at lag 1. These values indicated that the series is nonstationary and that differencing is
called for. To remove nonstationary, the series is seasonal differenced and the sample
ACF and PACF of non-seasonal differencing and seasonal differencing were
computed as shown in Table (4.41) and Table (4.42). They were displayed in Figure
(4.27) and Figure (4.28).




Table (4.41)
Estimated Autocorrelation Function for Non-Seasonal and Seasonal F irst
Difference Series of Production for 2000 Kilo Volt Ampere

Lagk 1 2 3 4 s 6 7 8 9 10 11 12
112 -625 248 -105 045 -060 -063 107 -117 065 032 167 —378

S.E 141 140 138 137 135 133 132 130 128 127 125 123
13-24 137 005 -127 145 -153 149 -Q52 -075 226 -282 171 -092
S.E A22 120 118 116 114 112 110 108 106 104 102 .100

Figure (4.27)
Sample Autocorrelation Function for Non-Seasonal and Seasonal First

Difference Series of Production Series for 2000 Kilo Volt Ampere

2000 KvA

O coerticiert
1.0 —=Upper Confidence Limit
T Lower Confidence Lim#t

0.5+

0.0~

ACF

0.5

-1.0+

| LI T e | LR SEOR N NN S S N T SRNT MY S T AU S i
t 23 43567 8 91011 121314151617 1819 2021 22 23 24

Lag Number

Table (4.42)
Estimated Partial Autocorrelation Function for Non-Seasonal and Seasonal First

Difference Series of Production for 2000 Kilo Volt Ampere

Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 -625 -235 -106 -046 -092 -253 -123 -.154 -182 -073 .322 036

S.E 146 146 146 146 146 146 146 146 146 146 146 146
13-24 -181 -034 -129 069 -025 -032 .151 -205 -016 -112 -013 .01
S.E 146 146 146 146 146 146 148 146 146 146 146 .146




Figure (4.28)
Sample Partial Autocorrelation Function for Non-Seasonal and Seasonal First

Difference Series of Production Series for 2000 Kilo Volt Ampere
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The sample ACF is tails off and the sample PACF cuts off after lag 1 because
none of the sample PACF values is significant expect that lag 6 and 11.

The suggested series (1-B%)Z, might be described by SAR (1) process as a
tentative model for the series

(1-(D312)Zt= 60 + at

4.6.2 Parameter Estimation for SAR (1) model
Using SAR (1) model, the estimated parameters with their statistics were
shown in Table (4.43). According to this table, the estimated parameter of @ is 0.589,

since their p-value is 0.000, there is evidence to reject the null hypothesis: @ = 0.



Table (4.43)
Estimated Parameters and Model Statistics for SAR(1) Model of Production

Series for 2000 KVA
Estimate SE t Sig.
Constant 23.470 1.118 20.995 0.000
d 0.589 0.117 5.026 0.000

The following estimated model was obtained
(1-0.589B'%)Z,= 23.470 + a,
(0.177) (1.118)
The estimation of the SAR (1) model of production series for 2000 KVA give
B, = 23.470 with estimated standard error 1.118 and ® = 0.589 with the estimated
standard error 0.117. Under the null hypothesis Hy: @ = 0 the test statistics t is 5.026
with p-value is 0.000. Hence, there is evidence to reject the null hypothesis.
Moreover, the sample ACFs and the sample PACFs of residual for the above
tentative model were shown in Table (4.44) and (4.45), respectively. They were

showed in Figure (4.29) and (4.30).

Table (4.44)
Estimated Autocorrelation Function of Residual for SAR (1) Model of
Production Series for 2000 KVA

Lagk 1 2 3 4 5 6 7 8 9 10 11 12
1.12 400 439 245 155 086 .096 .102 -042 006 .020 .024 -119
SE 129 148 169 174 177 A77 178 179 179 179 179 179
13-24 -006 -085 -149 068 -010 .097 -008 -034 -002 -133 .027 -039

181 181 181 .183 .184 .184 185 .185 .185 .185 .186 .186

S.E




Figure (4.29)
Sample Autocorrelation Function of Residual values for SAR(1) Model of
Production Series for 2000 KVA
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Table (4.45)

Estimated Partial Autocorrelation Function of Residual for SAR(1) Model of
Production Series for 2000 KVA

lagk 1 2 3 4 5 6 7 8 9 10 11 12
117 400 332 -007 -073 -027 089 076 -171 -021 113 .047 240

S.E 129 129 129 129 129 129 129 129 129 429 129 129
13-24 030 .054 -119 196 -001 .065 -077 -192 .142 -101 .055 .008
S.E 420 129 129 129 129 129 129 129 129 129 129 129




Figure (4.30)
Sample Partial Autocorrelation Function of Residual values for SAR (1) Model
of Production Series for 2000 KVA
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The Sample ACF was exponential decay and the sample PACF cuts off after lag
2 and these model exhibit a pattern.So, the residual series are not white noise process.
Since, another tentative seasonal ARIMA (1, 1, 0) x (1,1,0),, model considered, that
is

(1-OB)(1-®B2)(1-B)(1-B12)X,= p+a,

Using multiplicative seasonal ARIMA (1, 1, 0) x (1,1,0),, model, the estimated

parameters with their statistics were shown in Table (4.46).

Table (4.46)
Estimated Parameters and Model Statistics for seasonal ARIMA (1, 1, 0) x
(1,1, 0)42 Model of Production for 2000 KVA

Estimate SE t Sig.
Constant -0.049 0.269 -0.181 0.857
] -0.669 0.110 -6.077 0.000
0 -0.514 0.131 -3.919 0.000

The following estimated model was obtained

B pacF
—_ucL

——LCr

(1-0.669B)(1-0.514B12)(1-B)(1-B2)X,= -0.049+a,
0.110)  (0.131) (0.269)




According to Table (4.46), the estimated parameters of @ and @ are -0.669 and
-0.514, respectively. Since the p-value less than a = 0.05, the parameters values are

significant at 5% level.

4.6.3 Diagnostic Checking -

To check model adequacy, in Table (4.47) and Table (4.48) was shown the
residual ACF and PACF of the modified model. They were shown in Figure (4.31)
and (4.32), along with the confidence interval.

Yi(@y) + 2S E[y,.(a)]
Where,

— i
S.Elyk (@] = \/_Z

Table (4.47)
Estimated Autocorrelation Function of Residual for seasonal ARIMA (1, 1, 0) x
(1,1, 0)1 Model of Production for 2000 KVA

Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 -096 -085 027 -115 -223 -091 -038 -183 .169 .169 .134 .064

S.E 146 147 148 148 150 157 .158 158 .163 .167 .170 .172
13-24 032 -109 -075 009 -196 .128 -003 -.098 .156 -028 .046 -.057
S.E A73 173 174 175 175 180 182 182 .183 186 .186 .186




i Figure (4.31)
Sample Autocorrelation Function of Residual values for seasonal ARIMA 1,1,0)

x (1,1, 0)1; Model of Production for 2000 KVA
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Table (4.48)

Estimated Partial Autocorrelation Function of Residual for seasonal ARIMA
1,1,0)x (1,1,0);, Model of Production for 2000 KVA

Lag k 1 2 3 4 5 6 7 8 9 10 11 12
1-12 -096 -095 009 -122 -252 -186 -143 -308 -033 017 .098 .035

SE 146 146 146 146 146 146 146 146 146 146 146 .146
13-24 007 -070 -012 072 -078 .196 .035 -137 .053 -160 .052 -.059
SE 146 146 146 146 146 146 146 146 146 146 .146 .146




Figure (4.32)
Sample Partial Autocorrelation Function of Residual values for seasonal ARIMA

(1,1,0)x (1,1, 0),,Model of Production for 2000 KVA
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Values of the residual ACF of seasonal ARIMA (1, 1, 0) x (1,1,0),, are all
small and exhibit no patterns. And, the values of residual PACF of modified model lie
inside the confidence limits except at lag 8. This suggested that this model adequate.
Hence, the autocorrelation of @; can be taken as significant different from zero.

An overall check is performed by using the test statistic,

Q=n ZII§=1 Vi (&t)

As the result of p value, the observed value of Q is 17.322 and it is not
significant at 5 % significant level p-value is 0.365

Thus, the fitted seasonal ARIMA (1, 1, 0) x (1,1,0), model is judged adequate

for the series.

4.7 Forecasting
The models of the production series for 100 Kilo Volt Ampere, 160 Kilo Volt
Ampere ,400 Kilo Volt Ampere and 2000 Kilo Volt Ampere have been identified,

estimated and checked for adequacy. The accepted models will be used to forecast the

values for January to December of 2018.

3 pacF
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—LCL



Production Series for 100 Kilo Volt Ampere

Since the model seasonal ARIMA (1, 0, 0) x (1,1,0),, is adequate, this model
can be used to forecast the future value for production of 100 KVA.

The forecasts for January to December, 2018 are as shown in Table (4.49)

Table (4.49)
The Forecast for January to December, 2018 of Production Series for 100 KVA
Jan 26 May 38 Sep 36
Feb 32 Jun 42 Oct 45
Mar 30 Jul 33 Nov 45
Apr 33 Aug 39 Dec 42
Figure (4.33)

The Actual, Fitted and Forecast Values with 95% Confidence Limits for the
Number of Production Series for 100 KVA
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Production Series for 160 Kilo Volt Ampere

Since the model seasonal ARIMA (1, 0, 0) x (1,1,0),, is adequate, this model
can be used to forecast the future value for production of 160 KVA.

The forecasts for January to December, 2018 are as shown in Table (4.50)




Table (4.50)

The Forecast for January to December, 2018 of Production Series for 160 KVA
Jan 33 May 31 Sep 32
Feb 34 Jun 31 Oct 37
Mar 29 Jul 31 Nov 34
Apr 33 Aug 31 Dec 36
Figure (4.34)

The Actual, Fitted and Forecast Values with 95% Confidence Limits for the
Number of Production Series for 160 KVA
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Production Series for 400 Kilo Volt Ampere

Since the model seasonal ARIMA (1, 0, 0) x (0,1,0),, is adequate, this model
can be used to forecast the future value for production of 400 KVA.

The forecasts for January to December, 2018 are as shown in Table ( 4.51)

Table ( 4.51)
The Forecast for January to December, 2018 of Production Series for 400 KVA
Jan 23 May 39 Sep 40
Feb 35 Jun 41 Oct 41
Mar 32 Jul 37 Nov 45
Apr 33 Aug 35 Dec 39




Figure (4.35)
The Actual, Fitted and Forecast Values with 95% Confidence Limits for the
Number of Production Series for 400 KVA
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Production Series for 2000 Kilo Volt Ampere

Since the model seasonal ARIMA (1, 1, 0) x (1,1,0);, is adequate, this model
can be used to forecast the future value for production of 2000 KVA.

The forecasts for January to December, 2018 are as shown in Table (4.52)

- Table (4.52)
The Forecast for January to December, 2018 of Production Series for 2000 KVA
Jan 23 May 27 Sep 29
Feb 23 Jun 27 Oct 28
Mar 25 Jul 24 Nov 35
Apr 25 Aug 25 Dec 30
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CHAPTER V
CONCLUSION

In this thesis, the basic statistical characteristics of some monthly production
series of transformers such as 100 Kilo Volt Ampere,160 Kilo Volt Ampere, 400 Kilo
Volt Ampere, 2000 Kilo Volt Ampere series and the model building procedures for
these series have been presented.

Many time series data have important seasonal components and it is necessary
to measure the seasonal variation. In time series analysis, one study the four
components: trend, seasonal, cyclical and random existed in the time series model.
One may test the seasonality for these data by using the ANOVA Table. Trend and
cyclical components are represented by deterministic time functions, seasonal
component of seasonal indexes and random components by its statistical properties.

The number of production series are gradually increasing during the period of
5 years (from studying period 2013 to 2017). It is found that the total number of
production increased during winter seasons such as October, November and
December.

A seasonal index may be computed for the purpose of studying the seasonal
movement itself, the objective being to avoid or minimize the consequences of the
seasonal changes, in order to smooth out the seasonal fluctuations. In this thesis, the
Ratio to Moving Average Method is used to measure the seasonal index. From
production series for 100 KVA, it has been found that the lowest value of seasonal
index occurs in September and the highest value of seasonal index are observed in
November. From production series for 160 KVA, it has been found that the lowest
value of seasonal index occurs in August and the highest value of seasonal index are
observed in December. From production series for 400 KVA, it has been found that
the lowest value of seasonal index occurs in September and the highest value of
seasonal index are observed in November. From production series for 2000 KVA, it
has been found that the lowest value of seasonal index occurs in August and the
highest value of seasonal index are observed in November.

In addition, the Box- Jenkins method was utilized in modelling and forecasting

the number of production series of transformers. The multiplicative seasonal ARIMA
(1, 0, 0) x (1,1,0);, , ARIMA (1, 0, 0) x (0,1,0);; and ARIMA (1, 1, 0) x (1,1,0)4,

models were found to be adequate for the observed data series.




Based on the best fitted model, monthly production series for transformers are
forecasted for future periods of 2018. The forecast value obtained by using fitted
model was generally considered to be reliable. So, the forecast values can be applied
in a variety of future planning purpose which are important for the production of
transformers in HISEM Co., Ltd. Finally, it is recommended that measuring seasonal
variation, seasonal model building and forecasting should be updated regularly in

order to give better estimates or forecasts for the number of production.




10.

REFERENCES

Anderson D.R, Sweeney D.J, Williams T.A: "Statistics for business and
Economics", gh Edition; South-Western.

Box, G. E. P., Jenkins, G. M., "Time Series Analysis: Forecasting and
Control", San Francisco, Diisseldorf, Johannesburg, Londom, Panama,
Singapore, Sydney. Toranto.

Daniel, W.W. and Terrell, J.C, (1992), "Business Statistics for Management
and  Economics", sixth edition, Houghton Mifflin Co., Boston.

May Thu Soe, (2011), "A Seasonal Time Series Model of Tourist Arrivals in
Myanmar", M.Econ (Thesis), Department of Statistics, Yangon University of
Economics.

Mya Thandar, (1997), "Seasonal Models for Monthly Transport Time Series
of Myanmar", M.Econ (Thesis), Department of Statistics, Yangon University
of Economics.

Myint Moe Moe Khin, (1998), "A Comparative Study of Some Estimation
Methods on Seasonal Variation", M.Econ (Thesis), Department of Statistics,
Yangon University of Economics.

Soe Thu Zar Tint, (2010), "Time Series Forecasting Using Holt-Winters
Exponential Smoothing", M.Econ (Thesis), Department of Statistics, Yangon
University of Economics.

Steiner, P.O., (1956), "An Introduction to the Analysis of Time Series",
Preliminary edition, Rinehart, New York.

Thandar, (2017), "Effect of Seasonality on Tourism Demand in Myanmar",
M.Econ (Thesis), Department of Statistics, Yangon University of Economics.

Wei, W.S., (2006), "Time Series Analysis: Univariate and Multivariate

Methods", 2" Edition; Pearson Education, Inc.




APPENDIX




Appendix A

Production Series for 100 KVA(2013-2017)

Month 2013 2014 2015 2016 2017
Jan 20 26 38 25 26
Feb 22 30 39 29 30
March 24 33 35 26 27
Apr 21 25 31 29 30
May 24 22 36 34 34
Jun 19 28 35 38 38
Jul 19 27 30 30 28
Aug 22 26 34 36 34
Sep 19 23 31 31 33
Oct 22 30 36 40 41
Nov 23 34 38 42 40
Dec 26 28 42 38 38
Sources: Hitachi Soe Electric and Machinery Co., Ltd

Production Series for 160 KVA(2013-2017)

Month 2013 2014 2015 2016 2017
Jan 18 20 21 26 26
Feb 12 27 25 26 31
March 17 30 22 23 24
Apr 17 20 26 26 30
May 17 22 25 22 34
Jun 18 27 30 19 39
Jul 14 23 25 25 28
Aug 13 2] 30 19 40
Sep 15 16 34 24 32
Oct 19 28 28 28 39
Nov 20 30 35 23 40
Dec 19 37 30 27 38

Sources: Hitachi Soe Electric and Machinery Co., Ltd




Production Series for 400 KVA(2013-2017)

Month 2013 2014 2015 2016 2017
Jan 18 23 24 25 22
Feb 29 25 29 29 32
March 23 25 33 26 29
Apr 18 19 25 29 30
May 15 25 22 34 36
Jun 13 25 28 38 38
Jul 17 25 22 30 34
Aug 12 22 29 35 32
Sep 14 20 22 32 37
Oct 27 27 30 38 38
Nov 29 29 34 40 42
Dec 30 25 30 38 36

Sources: Hitachi Soe Electric and Machinery Co., Ltd

Production Series for 2000 KVA(2013-2017)

Month 2013 2014 2015 2016 2017
Jan 19 29 22 23 21
Feb 20 22 19 20 25
March 17 18 26 25 22
Apr 19 23 21 22 26
May 17 20 28 27 25
Jun 15 21 23 23 30
Jul 18 19 28 23 23
Aug 10 20 24 24 25
Sep 15 22 26 26 32
Oct 22 24 29 28 28
Nov 25 36 32 35 35
Dec 27 22 28 30 30

Sources: Hitachi Soe Electric and Machinery Co., Ltd




Appendix B




Source: Hitachi Soe Electric and Machinery Co.,Ltd (201%8)
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