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ABSTRACT

Many economic time series exhibit seasonal behaviour. The estimation of

seasonal variation is important problem in time series analysis. Consequently,

seasonal variations are needed to determine and seasonal adjustments are needed in

forecasting. In this thesis, the production series for transforners for the period of

January 2013 to December 2017 are studied.

Stochastic models for monthly production series are found by using Box-

Jenkins model building approach. Basic statistical characteristics for the production

series are first investigated and statistical test for seasonality is applied to each series

to confirm the existence of seasonality. Seasonal variation of the production series for

transformers from January 2013 to December 2017 are measured by using Ratio to

Moving Average Method. Suitable stochastic models for monthly production series

are found by following the three stages of model building, namely, identification,

estimation and diagnostic checking. Whenever needed, computer programs for the

systematic development of the model building procedure are developed. It is found

that ARIMA (1,0, 0) x (0,1,0)D, ARIMA (1,0, 0) x (1,1,0)12 ARIMA (1, 1,0) x

(1,7,0)pmodels are suitable for our series. Forecasting is very important in future

decisions making. The forecast based on the fitted model were also validated in this

thesis in order to support future decision making for planning pu{pose.
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CHAPTER I
INTRODUCTION

1.1 Rationale of the Study

Manufacturing is the production of merchandise for use or sale using labour

and machines, tools, chemical and biological processing, or formulation. In

Myanmar's manufacfuring sector, the new regulation enacted recently as well as lifted

from the sanction list make the companies require to be more competitive and

overcome the new challenges in many different ways.

The production of transformers from HISEM Co., Ltd are performed as follow:

the drawing design is calculated according to IEC 7612000 and Core Coil and Tank

Design Extrusion have been produced form with Auto CAD and sent to every

production department. In addition to routine test, each new design of transformer

power rating is finalized with Temperature High Test, Voltage Lighting Evolved Test,

and Portable Sound Test. After testing the passing transformers are tested final QC by

Research and Development Department. After that, they are packed and sent to the

customers as the fixed date.

The products are distributed by the agents in Yangon, the upper Myanmar and

the lower Myanmar. In distributing the products, the price has to be fixed and the

system of distributing needs to be made in terms of the instruction of General

Manager. To have more customer satisfaction, HISEM Co., Ltd give one to five years

guarantee for the transformers.

The production of HISEM Co., Ltd is directly proportional to the demand.

That is why the transformers are produced according to customer's orders. The

production of transformers is increasing year by year because of transformers are

produced according to international norms, because of producing in local area and the

prices cheap, they send the transforrners in time according their requirement.

Among the variety of transformers in HISEM Co., Ltd, four products with

different system voltages were selected. Because of these products are highly

production in every year.



1.2 Objectives of the Study

The objectives of this thesis are-

1. To examine the seasonality in the number of production transformer time

series of HISEM Co., Ltd and to find out the seasonal indexes.

2. To construct a stochastic seasonal time series model and to obtain the forecast

values for the number of production transformer time series of HISEM Co.,

Ltd.

1.3 Method of Study

An analytical method with the support of tables, figures, graphs and plots has

been extensively used in this study. This method is observed to be more suitable to the

nature and characteristics of the observed data series. More emphasis is put on

analytical method of time series analysis and forecasting for the analysis of the data

on the number of production transformer series of HISEM Co., Ltd.

1.4 Scope and Limitations of the Study

This study is based on the available information from Hitachi Soe Electric and

Machinery Co., Ltd, literatures studies and statistical records from various

publications for statistical analysis. Data used in this study were obtained from

authorized persons of HISEM Co., Ltd and monthly production record. The data for

the study were covered for the period January 2013 to December 2017.

1.5 Organtzation of the Study

This thesis consists of five chapters. Chapter I introduces rationale of the study,

objectives of the study, method of study, scope and limitations of the study as well as

organizatron of the study. Chapter II presents the profile of HISEM Co., Ltd and basic

statistical characteristics of production series of HISEM Co., Ltd. Chapter III is

concerned with time series, measuring seasonal variation in a time series by

traditional method and the Box-Jenkins seasonal ARIMA models. Chapter IV

includes the results and findings of seasonality in total number of production series

HISEM Co., Ltd using traditional approach and the Box-Jenkins approach. Chapter V

highlights conclusion, suggestions and further research problems in the case of

seasonality in time series.

.!



CHAPTER II
AN OVERVIEW OF HITACHI SOE ELECTRIC AND MACHINERY CO.,

LTD

2.1 Introduction

Monthly time series over the years display variations over the months as well

as variations over the years. Monthly production series of HISEM Co., Ltd for the

years 2013 to 2017 are shown in Appendix A.

In this chapter, profile of HISEM Co., Ltd and basic statistical characteristics

of production series of HISEM Co., Ltd will be investigated.

2.2 Profile of Hitachi Soe Electric and Machinery Co., Ltd

Soe Electric and Machinery established in 1993 is a major power and

distribution transformer manufacturer, with its Head office & Factory in Yangon,

Myanmar. Head office located at Building No.l, Aung Chan Thar Housing

Estate,East Shwegonedine Rd., Bahan Tsp and Factory situated at Plot No.472,23'd

Quarter, No.(l) Industrial Zone, Dagon Myothit(South), Yangon.First activity is

specified for the scope of Head Office as 'Sales and Marketing of Electrical

Transformers'. Second activity is specified for the scope of Factory's activity as

oManufacture, Maintenance and Repair Services of Electrical Transformers'. The

plant area site of factory is 40,000m2.

SEM has branch offices in Naypyitaw and Mandalay for customer to provide

sales & service. It also has sister company in Singapore called Soe Trading Co., Ltd,

which has done the trading business on behalf of SEM. SEM holds alarge share of
the Myanmar market for distribution transforners in particular. SEM received a Gold

Medal for successful achievement in producing distribution transformers in Industrial

Fair 1996, Ybngon, Myanmar and Certificate of Honour from Ministry of Electric

Power for successful major repair achievement of 47 ,}l{VA 33lll KV power

transformer in 2000 and a Gold Medal for outstanding product of 10 MVA 33/11 KV

Power Transformer in Myanmar Industrial Exhibition 2003, Mandalay, Myanmar.

SEM also acquired Certificate of ISO 9001:2000 for QMS in 2005. SEM has

been the first electrical transformer company, which started practicing of ISO

14001 :2004 EMS in 2013 arld acquired the EMS certificate in 20I4.SEM and HIES

technically collaborated for amorphous transfoflners to produce lower no load losses



transformer in2013. Finally, Hitachi Group and SEM made the joint ventures in2015

to fulfillthe customers' current needs.

Hitachi Soe Electric and Machinery Co., Ltd (HISEM) formed by merging the

Hitachi technological innovation of HIES and 23 years of electrical transformer

manufacturing experience of SEM. The paid up capital of HISEM is USD 45 millions.

As for distribution capacity will be 8000 pcs per year and that for power transformers

capacity will be 800,000 KVA per year with different system voltages. The rated

power has been limited from 50 KVA to 30,000 KVA. And then, rated voltage classes

are 6.6 KV, 11 KV, 33 KV and 66 KV. As per HR data, SEM has manpower over 550

staffs. Normal working hours are 8:30 AM to 5:00 PM at HISEM Co., Ltd. The

company is closed on the Sundays.

The outline of business are Manufacturing, Installation, Leasing, Maintenance,

Repair & Sales of Electrical Transformers switchgear and transformer related

accessories. HISEM achieved Asean outstanding engineering achievement award for

year 2015 on the role in the local design and manufacturing of appropriated

technology products in Myanmar. HISEM joined with SMBC Bank, BTMU Bank,

KBZ Bank, CB Bank to satisfy their customer's payment for transformers. HISEM is

mainly supply to Government Tender Project, System. Improvement Project,

Industrial Zone, Construction.To maintain a competitive edge in such an environment

HISEM continuously tries to improve the quality of what they offer to customers.

2.2.1 Vision, Goal, Mission and Qualify Management System of Hitachi Soe

Electric and Machinery Co., Ltd

(a) Vision and Goal

HISEM keeps the vision of endeavouring to be the leading joint venture

transformer manufacturing private company for electrical transformers and related

accessories for the best of our customers. HISEM continuously improve innovative

techniques to meet demand and satisfaction of the customer with respect to time

frame. HISEM work attitude is 'To make Tomorrow Better than Today'. HISEM is

the unique source for superior transformers combined with high quality, competitive

price and shorter lead times.

(b) Mission

The mission of the company are- conformity with said national and

international quality and standards, manufacturing environment friendly transformer
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with bare minimum loss, performing to meet customer demand and satisfaction in fu1l

and fast manner, developing human resources in Myanmar, expanding both domestic

and export business becoming globally standardized managemetrt & compliant

company.

(c) Quality Management System

HISEM established and followed Intemational Quality in Product, Service as

well as Environment by complying with ISO 9001, ISO 14001 and GMP.

(1) Product Quality and Customer Satisfaction Policy

HISEM is committed to pursue excellence with quality and standard

corresponding to customer needs. HISEM also committed to provide sincere service

and conduct business in compliance with laws and relevant environment, emphasize

conservation of energy and efficient use of natural resources on behalf of customer.

@ GMP Policy

HISEM is committed to provide a safe and clean work environment to all its

employees. Adopting Good Manufacturing Practices is seen as a way of life
throughout the entire company.

(3) Environmental Policy

HISEM recognizes its responsibility towards the care of the environment and

is committed to the avoidance and reduction of waste and pollution within the factory

and, continual improvement of its Environmental Management System. HISEM will

continually seek to reduce the usage of resources within the factory and minimize

discharges that may pollute the environment.

HISEM is committed to comply with any and all applicable legislation and

regulations with respect to the environment.

To ensure the effectiveness of its Environmental Management System,

HISEM has adopted the ISO 14001:2004 and ISO 14001''2015 Standard.

The above policy provides a framework for the setting and reviewing of

environmental objectives and targets is implemented and maintained within the

HISEM's factory and communicated to all employees.

2.2.2 Organrzational Structure of Hitachi Soe Electric and Machinery Co., Ltd

The organizational structure of Hitachi Soe Electric and Machinery Co., Ltd is

shown in Figure 2.1
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As shown in Figure 2.1, corporate organizational structure includes; Board of

Directors are formed as steering committee and two departments are comprised under

Executive Director. These departments are Production department and Non

Production department. There are four departments under Production department,

namely, Technical Development and Support Division, Manufacturing Division, QC

department and Servicing Division. Similarly, six departments are comprised under

Non Production department. These are HR & Admin department, Sales & Marketing

department, Purchasing department, Service Admin department, Finance & Account

department and Store department. Board of director (BODs) are making important

decisions concerns with production plan, budget and targets set by the BODs. The

chairman is making principal decisions regarding the inventory level for each product

item. He is responsible for the overall business management and supervises all the

other employees. Front line managers, supervisors and staffs are the employees lie on

the working floor and deal with routine jobs and upcoming problems involved in daily

basic functions.

2.3 BasicStatisticalCharacteristics

In this section, some basic statistics of production series are presented in order

to be able to see their significant variations in a summarized form.

The statistical measure used are the mean, the variance, coefficient of

variation, maximum and minimum production of transformers. These values are

calculated from the monthly series for each month (January to December) over a

number of years and for each year over a number of months.

To calculate these values, we define lq as the value of the random variables y

duringTthmonth of tth year and compute,

!i.=f,Zf=lti I i:1, 2,"',5

: the mean value for i"thyear

!.i = *ZT=rvii ;j:1,2,...,12
: the mean value for jth month

vt-f]Ll=r(Y,i-!)' ;i:1,2,...,5



: the variance for tthyear

vi - *Zl=r(yii - !.)' ;i:1,2,...,12
: the variance for jth month

c.v (D : *x 1oo

: the coefficient of variation for i.thyear

T xtoos.v 0) rr,
: the coefficient of variationfor jth month

These values enable us to compare the statistical characteristics from month to

month and from yearto year.

2.3.1 Production Series for 100 Kilo Volt Ampere

The monthly data of production series for 100 Kilo Volt Ampere arc collected

for 5 years, from 2013 to 2017 and presented in Appendix A. Basic statistical

characteristics of this series are investigated from two aspects. Firstly, the basic

statistics for each month over a number of years (5 years) are computed. This enable

us to see the pattern clearly from January to December throughout the year of the

means and variances. Secondly, the basic statistics for each year over a number of

months (12 months) are computed. The pattem over the years of the means and

variances can be seen clearly from these.

Some basic statistics of the production series for 100 Kilo Volt Ampere are

computed for each month and presented in Table (2.1).



Table (2.1)

Basic statistical characteristics for each month: Production series for 100 KVA

Month

January

February

March

April
May
June

July
August
September

October

November

December

Mean
(Pcs)

Variance
(Pcs)2 C.V

21.97

18.01

14.63

13.64

t9.32
23.05

15.18

17.85

19.80

20.87

t9.04
18.16

Maximum
(Pcs)

38

39

35

31

36

38

30

36

JJ

4l
42

42

Minimum
(Pcs)

20

22

24

2I
22

t9
r9
22

t9
22

23

26

27

30

29

27.2

30

3r.6
26.8

30.4

27.4

33.8

35.4

34.4

35.2

29.2

18

13.76

33.6

53.04

t6.s6
29.44

29.44

49.76

45.44

39.04

*
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From Table (2.1), it can be seen that the monthly mean values vary from

month to month for this series. For instance, January to May, July and September

have the means which are less than the overall mean 30.25(pcs). The monthly mean is

highest in November with 35.4(pcs) and the lowest in July with 26.8 (pcs). The

variance for each of the months vary from 13.76 (pcs)'to 53.04 (pcs)zand the

coeffrcient of variations vary from 13.64 percent to 23.05 percent. The coefficient of

variations for June is found to be largest (23.05 %\ The maximum value for each

month is the lowest in July and the highest in November and December. The

minimum value for each month is the lowest in June, July and September and the

highest in December. When the mean value for the month is large, the maximum

value and the minimum value of the series are also large. For the hold observed

records, the minimum value of the production series for 100 KVA is 19 (pcs), which

occnrs in June, July and September,2013. Similarly, the maximum value is 42 (pcs),

which occurs in Novembe\2016 and December,2015.

The yearly mean value, the variance, the coefficient of variations, maximum

and minimum over the twelve months for each year from 2013 to 2017 of the

production series for 100 KVA are presented in Table (2.2).



Table Q.2)

Basic statistical characteristics for each year: Production series for 100 KVA

Year Mean (Pcs) Variance (Pcs)2 C.V Maximum (Pcs) Minimum (Pcs)

From Table (2.2), it can be seen that the yearly means vary from 21.75(pcs) in

2013 to 35.42(pcs) in 2015. The variance of each year varies from 4.69(pcs)2 to

28.97(pcs)2and coefficient of variation for each year lies between 9.68 percent and

16.23 percent.

2.3.2 Production Series for 160 KiIo VoIt Ampere

The monthly data of production series for 160 Kilo Volt Ampere are collected

for 5 years, from 2013 to 2017 and presented in Appendix A. Basic statistical

characteristics of this series are computed in the same way as in production series for

1OO KVA.

For each month these statistical characteristics are computed and presented in

Table (2.3).

Table (2.3)

Basic statistical characteristics for each month: Production series for 160 KVA

Variance
(Pcs)z

20r3
20t4
2015

20t6
20t7

Month

January

February

March
April
May
June

July
August
September

October

November
December

2t.75
27.67

35.42

33.17

33.25

4.69

t2.22
11.74

28.97

24.35

9.95

t2.64
9.68

16.23

14.84

26

34

42

42

40

Maximum
(Pcs)

26

31

30

30

34

39

28

40

34

39

40

38

I9
22

30

25

26

Minimum
(Pcs)

l8
t2
t7
l7
t7
18

t4
l3
15

t9
20

t9

Mean
(Pcs)

22

24.2

23.2

23.8

24

26.6

23

24.6

24.2

28.4

29.6

30.2

10.s6

41.36

t7.36
2t.76
31.6

59.44

22.8

89.04

6r.76
40.24

54.64

48.56

C.V

14.64

26.s8

t7.96
19.60

23.42

28.98

20.76

38.36

32.47

22.34

24.97

23.07



From Table (2.3), it can be seen that the monthly mean values vary from

month to month for this series. For instance, January to May, July to September have

the means which are less than the overall mean 25.33(pcs). The monthly mean is

highest in December with 30.2(pcs) and the lowest in January with 22 (pcs). The

variance for each of the months vary from 10.56 (pcs)zto 89.04 (pcs)'and the

coefficient of variations vary fuom 14.64 percent to 38.36 percent. The coeffrcient of
variations for August is found to be largest (38.36 %). The maximum value for each

month is the lowest in January and the highest in August and November. The

minimum value for each month is the lowest in February and the highest in November.

When the mean value for the month is large, the maximum value and the minimum

value of the series are also large. For the hold observed records, the minimum value

of the production series for 160 KVA is 12 (pcs), which occurs in February,2013.

Similarly, the maximum value is 40 (pcs), which occurs in August and November,

20t7.

The yearly mean value, the variance, the coefficient of variations, maximum

and minimum over the twelve months for each year from 2013 to 2017 of the

production series for 160 KVA are presentedinTable (2.4).

Table (2.4)

Basic statistical characteristics for each year: Production series for 160 KVA

Year Mean (Pcs) Variance (Pcs)z C.V Maximum (Pcs) Minimum (Pcs)

2013

2014
2015

2016
2017

16.58

25.08

27.58

24

33.42

5.91

30.91

17.58

7.83

30.24

14.66

22.16

15.20

tt.66
16.46

20

37

35

28

40

12

t6
2t
T9

24

From Table Q.4),it can be seen that the yearly means vary from 16.58(pcs) in

2013 to 33.42(pcs) in 2017. The variance of each year varies from 5.91 (pcs)zto

30.91(pcs)zand coefficient of variation for each year lies between 11.66 percent and

22.16 percent.

2.3.3 Production Series for 400 Kilo VoIt Ampere

The monthly data of production series for 400 Kilo Volt Ampere are collected

for 5 years, from 2013 to 2017 and presented in Appendix A. Basic statistical



characteristics of this series are computed in the same way as in production series for

IOO KVA.

For each month these statistical characteristics are computed and presented in

Table (2.5).

Tabte (2.5)

Basic statistical characteristics for each month: Production series for 400 KVA

Month
Variance
(Pcs)z C.V

January

February

March
April
May
June

July
August
September

October

November
December

Mean
(Pcs)

22

28.8

27.2

24.2

26.4

28.4

25.6

26

25

3Z

34.8

31.8

5.84

4.96

12.t5
24.56

60.24

86.64

35.44

67.6

69.6

25.2

29.36

21.76

t0.79
7.73

12.82

20.48

29.40

32.77

23.25

3r.62
)).) I

t5.69
t5.57
14.67

Maximum
(Pcs)

25

32

JJ

30

36

38

34

35

37

38

42

38

Minimum
(Pcs)

18

25

23

18

15

t3
t7
t2
14

27

29

25

From Table (2.5), it can be seen that the monthly mean values vary from

month to month for this series. For instance, January, March to May and July to

September have the means which are less than the overall mean 27.72@cs). The

monthly mean is highest in November with 34.8(pcs) and the lowest in January with

22 (pcs). The variance for each of the months vary from 4.96 (pcs)z to

86.64(pcs)zandthe coefficientof variationsvary from7.73 percent to33.37 percent.

The coefficient of variations for September is found to be largest (33.37 %). The

maximum value for each month is the lowest in January and the highest in November.

The minimum value for each month is the lowest in August and the highest in

November. When the mean value for the month is large, the maximum value and the

minimum value of the series are also large. For the hold observed records, the

minimum value of the production series for 400 KVA is 12 (pcs), which occurs in

August, 2013. Similarly, the maximum value is 42 (pcs), which occurs in November,

2017.



The yearly mean value, the variance, the coefficient of variations, maximum

and minimum over the twelve months for each year from 2013 to 2017 of the

production series for 400 KVA are presented in Table (2.6).

Table (2.6)

Basic statistical characteristics for each year: Production series for 400 KVA

Year

20r3
2014
20r5
2016
2017

Mean
(Pcs)

20.42

24.17

27.33

32.83

33.83

42.41

7.t4
r6.56
23.64

25.47

31.90

11.06

r4.89
14.81

14.92

Maximum
(Pcs)

30

29

34

40

42

Minimum
(Pcs)

t2
t9
22

25

22

Variance (Pcs)z C.V

:i

From Table (2.6), it can be seen that the yearly means vary from 20.42(pcs) in

2A13 b 33.83(pcs) in 2017. The variance of each year varies from 7.L4(pcs)zto

42.41(pcs)2and coefficient of variation for each year lies between 11.06 percent and

31.90 percent.

2.3.4 Production Series for 2000 KiIo Volt Ampere

. The monthly data of production series for 2000 Kilo Volt Ampere are

collected for 5 years, from 2013 to 2017 and presented in Appendix A. Basic

statistical characteristics of this series are computed in the same way as in production

series for 100 KVA.

For each month these statistical characteristics are computed and presented in

Table (2.7).



Table (2.7)

Basic statistical characteristics for each month: Production series for 2000 KVA

Month
Variance
(Pcs)z

Mean
(Pcs)

C.V

January

February

March
April
May
June

July
August
September

October

November
December

23

2t.2
21.6

22.2

23.4

22.4

22.2

20.6

24.2

26.2

32.6

27.4

1 1.36

4.56

13.04

5.36

t7.84
23.04

12.56

3T.04

3r.36
7.36

16.24

8.64

14.78

10.07

16.72

10.43

18.05

21,.43

|s.96
27.05

23.14

10.3s

t2.36
t0.73

Maximum
(Pcs)

29

25

26

26

28

30

28

25

32

29

36

30

Minimum
(Pcs)

t9
t9
t7
r9
t7
l5
l8
10

15

22

25

22

From Table (2.7), it can be seen that the monthly mean values vary from

month to month for this series. For instance, February, March and August have the

means which are less than the overall mean 21.62(pcs). The monthly mean is highest

in November with 32.6(pcs) and the lowest in August with 20.6 (pcs). The variance

for each of the months vary from 4.56 (pcs)zto 31.36(pcs)2arrd the coefficient of

variations vary from 10.07 percent to 27.05 percent. The coefficient of variations for

August is found to be largest (27.05 %). The maximum value for each month is the

lowest in February and August and the highest in November. The minimum value for

each month is the lowest in August and the highest in November. When the mean

value for the month is large, the maximum value and the minimum value of the series

are also large. For the hold observed records, the minimum value of the production

series for 400 KVA is 10 (pcs), which occurs in August, 2013. Similarly, the

maximum value is 36 (pcs), which occurs in November,2ll4.

The yearly mean value, the variance, the coefficient of variations, maximum

and minimum over the twelve months for each year from 2013 to 2017 of the

production series for 2000 KVA are presented in Table (2.8).



Table (2.8)

Basic statistical characteristics for each year: Production series for 2000 KVA

Year Mean (Pcs) Variance (Pcs)z C.V Maximum (Pcs) Minimum (Pcs)

2013

20t4
2015

20t6
2017

18.67

23.00

25.50

25.50

26.83

19.22

22.67

13.08

15.25

t6.47

23.49

20.70

14.18

15.3 r

15.13

27

36

32

35

35

1

1

1

0

8

9

20

12

From Table (2.8), it can be seen that the yearLy means vary from 18.67(pcs) in

2013 to 26.83(pcs) in2017. The variance of each year varies from 13.08(pcs)zto

22.67(pcs)zand coefficient of variation for each year lies between 14.18 percent and

23.49 percent.

'j
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CHAPTER III
THEORETICAL BACKGROLIND

3.1 Time Series

A time series is a set of observation measured at successive points in time or

over successive periods of time. A time series is a sequence of value of some variable

or composite of variables, taken at successive time periods. There are various

objectives for studying time series. They include the understanding and description of

the generating mechanism, the forecasting of future values, and optimal control of a

system. Managers and social scientists often deal with processes that vary over time

observations. A time sequence on such a process is called a time series. Time series

are analysed to understand, describe, control and predict the underlying process. A

time series is a sequence of n observationsY1,Y2,...,Ys,...,Yn on a process at equally

spaced points in time. A time series consists of a series of observations on a variable

of interest collected sequentially in time. The analysis of time is a necessary technique

in many areas such as industrial research, economics, marketing, physical and

chemical sciences, etc. One of the important aspects of such a series is the dependence

structure of adjacent observation; for the satisfactory analysis of the series, it is
necessary to construct an appropriate stochastic model which can further be used in

various ways, depending on the field of applications.

In time series analysis, it is usually assumed that conditions are the same

during the period for which the time series is analysed. Sometimes, conditions may

change and time series observed during a certain period covers the changing

conditions. The changes may be due to interventions introduced intentionally or

unintentionally. It is usually desired to assertion the effect of interventions from the

time series data. In such a case, direct use of conventional statistical time series covers

the time period with the same condition. For example, a change in the govemment

policy can be taken as an intervention which can change the level of an economic

indicator. A time series is a collection of observations of well-defined data items

obtained through repeated measurements over time. For example, measuring the value

of retail sales each month of the year would comprise a time series. This is because

sales revenue is well defined and consistently measured at equally spaced intervals.

Data collected irregularly or only once are not time series.



r1

32 Components of a Time Series

Time series as defined are discrete time series, because the observations

pertain to separated points in time. There are also continuous time series, where the

variable is measured continuously over time. The analysis of a time series usually

involves a study of the components of the time series, such as the trend, cyclical,

seasonal and irregular components. A model represents the underlying process that

generates a time series. Various models exist to describe a time series. In a model the

actual observations may be considered as a result of combining two components, a

'true' process or 'signal' and the random process or 'noise'. In other models, us,ually

in economics and business, the observations are described by 
"o-por.rf,1uch 

as

'trend' cycle', 'seasonal' and 'irregular'. The first component is unpredictable

variation, which can be described by a probability distribution with zero mean. In

either case, the process that generates the observation can be described in terms of a

set of significant pattern in time, plus an unpredictable random element.

3.2.1 Trend Component

The trend is the long- term movement in a time series. The trend component

describes the net influence of long term factors. Generally, these factors include: (a)

changes in the size, demographic characteristics, and geographic distribution of the

population, (b) technological improvements, (c) economic development and (d)

gradual shifts in habits and attitudes. Since these effects tend to operate fairly

gradually and in one direction over long periods of time, the trend component usually

is modelled by a smooth, continuous curve spanning the entire time series. The curve

employed is called the trend curve. A major use of trend analysis is for long-term

forecasting. The trend may either be an upward trend or downward trend.

3.2.2 Cyclical Component

Many variables exhibit a tendency to fluctuate above and below the long-term

trend over a long period of time. These fluctuations are called cyclical fluctuations or

business cycles. Typically, the cyclical component contains cycle of expansion and

contraction that are of uneven duration and amplitude. Some of the factor leadings to

cyclical movements in business and economic time series include buildups and

depletions of inventories, shifts in rate of capital expenditure by businesses, year-to-

year variations in harvests, and changes in governmental monetary and fiscal policy.



Cyclical movements are studied for information on changes in rate of current activity.

This information is used for assessing current conditions and for making short-term

forecast.

3.2.3 Seasonal Component

The seasonal component describes effects that occur regularly over a period of

a yeat, month, quarter, week or day. Seasonal effects, generally, are associated with

the calendar or the clock. Seasonal eflects tend to recur fairly systematically.

Consequently, the pattern of movement in the seasonal components tends to be more

regular than the pattern in the cyclical component and therefore is more predictable,

although sometimes the seasonal pattem undergoes gradual modification. Seasonal

movements are measured so that seasonal effects can be taken into account in

evaluating past and current activities, as well as incorporated into forecast of future

activity.

3.2"4 IrregularComponent

The irregular component describes residual movements that remain after the

other components have been taken into account. Irregular movements reflect effects

of unique and nonrecurring factors, such as strikes, unusual weather conditions, and

intemational arises. In some business and economic time series, the cyclical

component is itself so irregular that any breakdown into separate cyclical and

irregular component would be arbitrary. In such cases, a combined cyclical irregular

component is often developed.

3.3 Time Series Models

It is convenient to represent the series as a sum of these four components and

one of the objectives may be to break the series of the down into its components, for

individual study. However, in so doing, a model is imposed on the situation. It may be

reasonable to suppose, that trends are due to permanent forces operating uniformly in

more or less the same direction that short- term fluctuations about these long

movements are in same direction.

A mathematical model of a time series may be expressed in functional form.

The relationship is usually described by one of two models: the multiplicative model

and the additive model.



3.3.1 Additive Time Series Model

In an additive time series model, the value of dependent variable Y can be

represented as the sum of four components. Thus, the additive model takes the form

Y : I+.S+C+I
Where,

Y :observed value of the variable of interest

T : trend component

S : seasonal component

C : cyclical component

J : irregular component

In the additive model, each of the four components is measured in the same

units as the dependent variable Y and the components S, C and I are measured as

deviation from the trend value T.

Choose the additive model when the magnitude of the seasonal pattern in the

data does not depend on the magnitude of the data. In other words, the magnitude of
the seasonal pattern does not change as the series goes up or down.

3.3.2 Multiplicative Time Series Models

In a multiplicative time series model the value of dependent variable Y can be

represented as the product of four components. Thus, the multiplicative model takes

the form

Y : IxSxCxI
Where,

Y :observed value of the variable of interest

T nrend component

S : seasonal component

C : cyclical component

I - irregular component

In the multiplicative model, the trend component is expressed in the same unit

of measure as the dependent variable Y. The other three components are expressed as

percentage deviations from the trend.

Choose the multiplicative model when the magnitude of the seasonal pattern

in the data depends on the magnitude of the data. In other words, the magnitude of the
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seasonal pattern increases as the data values increase, and decrease as the data values

decrease.

In the additive model, the deviations from the trend a.re measured in absolute

terms. In the multiplicative model, the deviations from the trend are measured in

percentages.

3.4 Test of Seasonality

In the study of seasonality, seasonal variation for each month of the year is

usually considered. The following model for the randomized complete block design

(Daniel, W.W and Terre, T.C., 1992) will be used in testing seasonality in monthly

tourist time series.

lii: tt+F*fi+er,;1<i<-n,7< j <k
Where lii rs atypical value from the overall population,

p is an known constant,

Bi represents a yearly effect, reflecting the fact that the experimental unit fell

in the ith year,

7; represents a monthly effect, reflecting the fact that the experimental unit

received the jth month and

eii is a residual component representing all sources of variation other than

months and years.

One make three assumptions when use the randomized complete block design.

(a) Each observed y,i constitutes an independent random variable of size 1 from one

of the kn populations represented. (b) Each of these kn populations is normally

distributed with mean Vt;and the same variance o2. The eii arc independently and

normally distributed with mean 0 and variance 62. (c) The block and treatment ef[ects

are additive. To state this assumption another way, one say that there is no interaction

between months and years.

In general, one test

116: There is no seasonality.

H1: There is a seasonality.

In other words, one test the null hypothesis that the monthly means are all

equal or equivalently, which mean that there are no differences in monthly effects.



To analyse the data, the needed quantities are the total sum of squares SST, the

sum of squares for months SSM, the sum of squares for years SSY and the error sum

of squares SSE. When these sum of squares are divided by the appropriate degree of
freedom, one have the mean squares necessary for computing the F statistic. For

monthly production in HISEM Co., Ltd during QOl3-2017) data k:12 and n:5 years.

The degree of freedom are computed as follows:

Total: Months * Years * Error

(kn-l): (k-1)+ (n-l) + (n-1)(k-t)

Where k: months, n= years

The degrees of freedom for error can be found the following:

(kn-l)-(k-l)-(n-1) : kn-1-k+1-n+l

: kn-k-fil
: k(n-1)-(n-1)

: (k-1)(n-1)

Short-cut formulas for computing the required sum of squares are as follows:

SSM: Zf=r:+- c ;!.i:E?=ttii

ssY: xlll y?.

- c ;!r.)f=rriiK

SST: L!=r}li=ryfj - C

sSE: S.tr - (.tsM + s.sr)

;!.. = Z?=tL!i=rli1

The results of the calculations for the randomized complete block design are

presented in the following analysis of variance (ANOVA) Table.

n -Y3nk
Where
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ANOVA Table for a Two-Way Analysis of Variance

Source S.S D.F M.S F-Ratio

Between Months SSM k-1 MSM: SSM/k-1 F1 : MSM/MSE

Between Years SSY n-1 MSY: SSY/n-1 F2 : MSY/MSE

Error SSE (n-1)(k-l) MSE: SSE/(n-1)(k-l)

Total SST kn-1

The computed ratios F1 with critical values Kt: Fa,(r<-L),(n-L)(k-Ly is then

compared. If this ratios are equal to or exceed the critical values, reject the null

hypothesis.

3.5 Method of Finding Seasonal Variation

Seasonal variation is measured in terms of an index, called a seasonal index. It

is an average that can be used to compare an acfual observation relative to what it

would be if there were no seasonal variation. An index value is attached to each

period of the time series within a year. This implies that if monthly data are

considered there are 12 separate seasonal indices, one for each month. There exists

different methods for measuring the seasonal variation of a time series. The methods

have been developed to meet different objectives of estimating seasonal and the

assumed models of the time series. The seasonal pattern itself is important in the

application of these methods since most of the methods assume that the seasonal

pattern is constant or stable.

In finding the index of seasonal variation as seasonal measures, it should be

noted that the index must

(a) Measure all the variation in the series that is seasonal in character, and

(b) Measure nothing but the seasonal variation

A seasonal index thus consists ofa series ofpercentage figures, averaging 100,

which shows the relative level of the series for the various months, quarters or weeks

of the year. An index of seasonal variation can be constructed by expressing each item

in the time series as a percent of the average monthly or quarterly value for the year.
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There are many different methods for computation of seasonal index, some of

which are quite acctrate and some of which are only appropriate. The following

methods will be discussed in this section.

(1) Average percentage method

(2) Ratio to moving average method

(3) Link relatives method

(4) Ratio to trend method

These methods have been developed to meet different objectives of estimating

seasonals and under the assumed models of the time series. The seasonal pattern itself

is important in the application of these methods since most of the methods assume

that the seasonal pattern is constant or stable. Of these methods, the Ratio to Moving

Average method and the Link Relatives method are simple and which are the most

widely used.

Average Percentage Method

In this method the data for each month are expressed as percentages of the

average for the year. The percentages for corresponding months of different years are

then averaged using either a mean or median. If the mean is used, it is best to avoid

extreme values which may occur.

The resulting 1200 percentages give the seasonal index. If their mean is not

100 % (i.e., if the sum is not 1200). These should be adjusted.

Ratio to Moving Average Method

The measurement of seasonal variation by using the ratio-to-moving-average

method provides an index to measure the degree of the seasonal variation in a time

series. The index is based on a mean of 100, with the degree of seasonality measured

by variations away from the base. The following are the steps for the computation of

the seasonal index by the Ratio to Moving Average method. (Steiner, 1956)

(1) Find the twelve months centered moving averages. This is equivalent to a

moving average of thirteen months with weights*(1,2,2,...,2,2,1).

By finding twelve months centered moving averages, we eliminate the

seasonality, since the seasonal pattern is periodic with a period of twelve months.

Also it will eliminate the random components or irregular movements. Therefore, the



centered twelve month moving averages are the approximates of trend and cyclical

components.

(2) Compute the ratio to moving average values, that is, the original data is

divided by its approximate moving average value. There, the first and last six

months may not be obtained.

By this step, the trend and cyclical components are removed from the original

data and the ratios are the values due to seasonal and random components. They are

called specific seasonals. (Steiner, 1956).

(3) Compute the averages of these ratios referring to the same months.

These averages are the crude seasonal index values.

This step involves two different purposes: the elimination of the random

components and averaging the seasonal relatives referring to the same months.

(4) Adjust the crude seasonal index.

In multiplicative model, the total seasonal index values have to be equal to

twelve (or 1200 percent) for monthly series. Therefore, the crude seasonal index is

adjusted to get a total of twelve (or 1200 percent).

Link Relatives Method

The same assumptions as in ratio to moving average method have to be made

to compute the seasonal index by the link relatives' method. The following are the

steps for the computation of the seasonal index by the link relatives' method.

(1) Find the link relatives' value.

This is to divide the current value by the previous values. Then, the first one

may not be obtained. These values show the relative changes of the consecutive

values.

(2) Find the averages of the link relatives values referring to the same months

These averages show the average changes in consecutive months within the

whole period of twelve months.

(3) Compute the chain relative values by assuming that the chain relative value of

the first month is unity.

The chain relative value for the current month is the product of the chain

relative value of the previous month and the average of link relatives for the current

month. These chain relative values constitute seasonal pattem and the trend within a

year.



(4) Determine the trend component within the year and adjust for the trend

To determine the trend component within a year, the chain relative value of

the first month is computed, that is, the product of the chain value of the last month

and the average of the link relatives for the first month is computed and the difference

between the chain relative value and the setting value unity is found. This difference

is regarded as the trend for twelve months. By dividing this value by twelve, the

dif[erence for a month is obtained, which is assumed to be the coefficient of linear

trend and denoted by A (delta). If value (i-1)4, i:1,2,...,12 are subtracted from the

corresponding chain relative values. Similarly, if the delta is negative, there exists a

downward trend and the respective trend values (i-1) lAl, i:1,2,...,12 arc added to the

corresponding chain relative values. After the adjustment, the adjusted chain relative

values are regarded as the crude seasonal index.

(5) Adjust the crude seasonal index

' The crude seasonal index is adjusted to get a total of twelve (or 1200 percent)

and the seasonal index is obtained.

Ratio to Trend Method

The following arc the steps to compute seasonal index by the method of ratio

to trend.

(l) Compute monthly trend values by the method of least squares.

(2) Express each original value as the percentage of the corresponding

trend value.

(3) Find out the mean percentage for each month.

(4) Values obtained in (3) above give seasonal variations. Seasonal index

can be calculated from these mean percentages by expressing them as

percentage of their own average.

3.6 The Box - Jenkins Methodolory

The Box - Jenkins methodology has been expressed steps for model

identification, methods of the estimation of the parameters in the ARIMA models,

diagnostic checking and forecasting.
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3.6.1 Modelldentification

Consider the general ARIMA (p, d, q) model

G - Q,B - ... - Q oBo )(t - B)2, - 0o + 0 - elB - ... - 0 rBq )a,

Model identification refers to the methodology in identiffing the required

transformations such as variance stabilizing transformation and differencing

transformations, the decision to include the deterministic parameter 0s when d > I

and the proper order of p and q for the model.

The following useful steps are used to identify a tentative model.

Step 1. Plot the time series data and choose proper transformations. In any

time series analysis, the first step is to plot the data. One usually gets a

good idea about whether the series contains a trend, seasonality,

outliers, non-constant variance and other non- normal and non-

stationary phenomena. This understanding often provides a basis for

postulation a possible data transformation.

In time series analysis, the most commonly used transformations are

variance- stabilizing transformations and differencing. Since

differencing may create some negative values, one should always

apply variance stabilizing transformations before taking differences. A

series with non-constant variance often needs a logarithmic

transformation. More generally, to stabilize the variance, one can apply

Box- Cox's power transformation.

Step2. Compute and examine the sample ACF and the sample PACF of the

original series to further confirm a necessary degree of differencing.

Some general rules are:

1. If the sample ACF decays very slowly and the sample PACF cuts

off after lag 1 it indicates that differencing is needed. Try taking

the first differencing (l-B)2,

2. More generally, to remove non-stationary that one may need to

consider a higher order differing (l-B) dZ, for d > 1. In most cases,

d is either, 0,1 or 2. Some authors argue that the consequences of

unnecessary differencing are much less serious than those of under

different.



Step3. Compute and examine the sample ACF and PACF of the properly

transformed and differenced series to identify the orders of p and q,

where p is the highest order in AR polynomial (1-@,B-...Q.Y)

and q is the highest order in MA polynomial Q-eP-...008).

Usually the needed orders of these p and q are less than or equal

to 3.

It is useful and interesting to note that a strong duality exists

between the AR and MA model in terms of their ACFs and PACFs.

To build a reasonable ARIMA model, one need a minimum of n:
50 observations and the number of sample ACF and PACF to be

calculated should be about f-, although occasionally for data of4'
good quality one may be able to identify and adequate model with

a smaller sample size. To identiff the order p and q by matching

pattems in the sample ACF and PACF with the theoretical pattern

of known model.

Table (3.1)

Characteristics Behaviour of ACF, PACF for AR, MA and ARMA Process

Process Autocorrelation Partial Autocorrelation

AR (p)

MA(q) Finite

Infinite (damped exponentials and / or
damped since waves).
Tail off according to

Pi = hP m + hP i-, + --. + Q pP i-p

Finite

Spike atlag l throughp,
then cut off

Infinite (dominated by
damped exponentials and
/ or damped sine waves)
Tail offSpike atlag 1 through q, then cuts off

ARMA(p,q) Infinte (damped expoentials and I or
damped sine waves after first q-p
lags).

Infinite (dominated by
damped exponentials
and^ or damped sine
waves after first q-p lags)
Tail offIrregular pattern at lag I through q,

then tails off according to

Pi = QPp + hPi. +... + QpPi-p

il

Source: Univariate and Multivariate Methods (William W.S.Wei)



Step 4" Test the deterministic trend term 0o when d > 0 for nonstationary

model, Qo(B)(l-B)oZ,=00+0n(B)a,, where the parameter 0o is

usually omitted so that it is capable of representing series with

random changes in the level, slope or trend. However, the differenced

series contains a deterministic trend mean, one can test for its inclusion

by comparing the sample mean W- of the differenced series W- (t-Bf

Zwthits approximate standardercor Sr7 .

To derive S,7

lim,-- nVar(W)=Ly,, and hence,
j=@

"'* =++ ) ,i = T, =:>7 = -*y, = )r<rl (3.1)

where, T(B)=Z\y-a" =dv(B)v(B)-r is the autocovariance generating function

and r(1) is its value at b: 1. Thus, the variance and hence the standard error for ,.ts is

model dependent. For the ARIMA (1, d, 0) model, Q-qB)\ry -at
(1- 0,B) (1-B) oZ, : u,

(l-0,B)V/,:a,;W: ffiu,
MA representation, \: yt@)a,

\r(B): I
(1-0,B)

Autocovariance generating function is

Z(B): o,'zry(B)y(B) -1 _

Where, B : l, T0) =

(l-flBXr-O,B-')

4
(l - 0,B

.62 ut,-w n(l - O)'

:o"(l-fr)
n(l-0,)'

(' d
Q_ Q),

)d



_oil t+E,l-;Lto j
_"',ll+p,l-;L-Al

The required standard error is

Ir *p,l
L,+,1

(.'4 =p) (3.2)

Sw= (3.3)

Expression of S* for other models can be derived similarly. However, at the

model identification phase, since the underlying model is unknown, most available
software use the approximation.

r- = [?f, 
+zp,+2p,+...*r;rf e.4)

where, frir tt " sample variance *rd bpbr,..,i1rare the first k significance sample

autocorrelation function of (Wt).

Under null hypothesis pp : 0; for k > 1

(3.s)

Alternatively, one can include 0o initially and discard it at the final model

estimation if the preliminary estimation result is not significant.

3.6.2 P arameter Estimation

After a model is identified for a given time series it is important to obtain

efficient estimates of the parameters. To obtain the estimate of param eters firSr..,
Apve2,",eor ofle rlzl/ use the least squares method since t, can be proved that the least

squares estimates are approximately maximum likelihood estimates in ARIMA

models. If the least squares, method is used, to choose those value of 0', ard 0, of the

parameter set which minimize the sum of squared .rror ) i,af obtained from the

observed time series.

There arises two difficulties in estimation stage:

(i) The equation involve unknown starting values,

To

n

sw @!;i
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(ii) The sum of squared effors function is in general nonlinear in the

coefficients to be estimated.

There are two approaches to (i)

(a) The unknown starting values are simply replaced by some appropriately

assumed values and estimation is conditional on these assumed starting

values.

(b) The estimation is based on estimated starting values from the sample

data. This unconditional approach is more efficient than the conditional

approach. For long series, the difference between the results obtained by

the two approaches is negligible.

Conditional Maximum Likelihood Estimation

For general stationary ARMA (p,q) model,

2, = QrZ,-r+...+Q12,-o*d, -lrd,-r-...-7no,-, (3.6)

Where, Z,=Z,-pand {a1} are independent identically distributed (i.i.d), N(0, o:)

white noise,

Joint probability density of a: (ata2, . . ., an)'is given by

o(%,tt,0,o1)= (2no2l% "-r(-+Z"r) (3.7)

Rewriting equation (3.6) as

ar=0ra,-r+...*0ra,-t+2,-Qr2,-r -...-Q02,-, (3.8)

one can note down the likelihood function of the parameter (Q,Ul,d).

LetZ: (ZtZz, ...,2^)'and assume that initial conditions

Z* : (Zr-p, Z-t, Zo)' and a* : (a,t-p, as, oo)'

The conditional log likelihood function,

LnL. (Q,lt A,d): -,r*rr.d ryP (3.9)

Where,

n

S*(0,p, e): >4(Q,trt,0 /2.,a.,2) (3.10)

is the conditional sum of squares function.



The quantities of At "^d6, which maximize equation (3.9) are called the

conditional maximum likelihood estimators.

Since Ln L* (Q,tt"0,d)involves the data only through S* (@,p,g,yare the same

as the conditional least squares obtained from minimizing the conditional sum of

square function S* (0,p,g,), which does not contain the parmeter d.
There are a few alternatives for specifying the initital condition Z* and a*, based

on the assumptions that {Zt} is stationary and {a1} is as series of i.i.d, lfQ, 4).
The unknown 7a by the sample mean 7 and unknown a1 by its expected value

of 0, and also assume ap: &p-r : . . . .: rrp+l-q:0 and by using equation (3.6) calculate

alfor t > (P+1)

The conditional sum of square equation (3.10) become

S- (Q, 1t,0) = Z 4 <0, trt,0 / Z)
il

1=p+l

(3.1 1)

4

Which is also the form used by most computer programs.After obtaining the

parameter estimatesfr, fuard6, the estimates d rf { is calculated from

-2 'S 
* (0, t/, e)

" d.-f

If equation (3.11) is used to calculate the sum of squares, d.f : (n-p) - (p+q+l)

d.f:n-(2p+q+l)
where, the number of degree of freedom d.f equals the number of terms used in the

sum of S* 1 Q,lt,0) minus the number of parameters estimated.

Unconditional Maximum likelihood Estiation and Backcasting Method

One of the most important functions of a time series model is to forecast the

unknown future value. And then one can back forecast or back cast the unknown

valueZ,":(Zyp,....Zt,Zo)'anda*:(ar-q,....ar,ao)'neededinthecomputationof

the sum of squares and likelihood functions.

Any ARMA model can be written in either the forward form.

(1-0B- ...QpW)2,=(1-0rB- ...?oBq)a, (3.13)

Where, Bj! : Zt-j

or the backward form,



Q-QF-..-QpFp)2,=(7-ef ...9rFq)a, (3.14)

Where, FjZu : Zr-:

Because of the stationary equation (3.13) and equation (3.14) should have

exactly the same auto covariance structure. {a1} is a white noise with men zero and

constant variance d .{"r} is also a white noise with mean zerc andconstant variance

d
The forward from equation (3.13) is used to forecast the unknown future values

Zr*jfor j>0 base on the data (ZyZ2, . . .,Zr). The backward form equation (3.14) is

also used to backcast the unknown past value Zl md hence compute a; for j ( 0 based

on the data (Zr, Zn-b . . . ,Z).Estimation, Box and Jenkins (1976) suggest the

following unconditional 1o g likelihood function.

L.L(Q, p, e, d): - : Ln2rfi-sL!'t''=e)- 
2 

Dtt L.eva 
2*-e- 

(3.15)

Where, S (0, p, 0) isthe conditional sum of square function given by,

S (Q,lt,0): I fe (a.l Q, p,e,Df'
n

(3.16)

rl The quantities $, 1t*de that maximize equation (3.15) are called

unconditional maximum likelihood estimators. Ln f (Q,tt"0,4) involves the data

only through S (A, p4 0), these unconditional maximum likelihood estimators are

equivalent to the unconditional least square estimators obtained by minimizing

s(d, tt o)-

In practice, equation (3.16) is approximated by a finite form,

S (Q,lt,0): I fe (a,l Q, p,e,Df'
t:-M

where, M is a sufficiently large integer such that the backcast increment

lE (hl d, tt I Z) -E(2".1 0, p, A Ol < s fort< - (M+ l).

Condition expectation, E(U d, lt, A Q and hence E (a1 I 0, p, A Q is negligible for

t s - (M + 1). After obtaining the parameter estimat" Q, ttand0, the estimate

fi of fi "unbe 
calculated as

\

\
i



s(A,lt,0)^)a-
n

.t

For efficiency, the use of backcasts for parameter estimation is important for

seasonal models that are close to be non-stationary, that the series are relatively short.

3.6.3 Diagnostic Checking

Time series model building is an iterative process. It starts with model

identification and parameter estimation. After parameter estimation, one has to assess

model adequacy by checking whether the model assumptions are satisfied. The basic

assumption is that the {a1} are white noise. The ais are uncorrelated random shocks

with zero mean and constant variance. For any estimated model, the residuals a/s are

estimates of these unobserved white noise ais. Hence, model diagnostic checking is

accomplished through a careful analysis of the residual series (rir) . Because this

residual series is the product of parameter estimation, the model diagnostic checking

is usually contained in the estimation phase of a time series package.

(l) To check whether the errors are normally distributed, one can construct a

Ar
histogram of the standardized residuals 

^ 2 and compare it with the standard
aa

normal distribution using the chi-square goodness of fit test.

(2) To check whether the variance is constant, one can examine the plot of

residuals or evaluate the effect of different l" value via Box-Cox method.

(3) To check whether the residuals are approximately white noise, one can

compute the sample ACF and sample PACF (or IACF) of the residuals to see

whether they do not form any pattern and are all statistically insignificant.

Another useful test is the portmanteau Lack of fit test. This test uses the entire

residual sample ACF's to check null hypothesis.

Hypothesis Ho : Pr: Pz : ... : Pr :0

The residual are not autocorrelated.

Ht : The residual arc autocorrelated.

Teststatistics : Q=n(n+4>rr=, @-U'' b'r

Critical value : K= fro*-*,

DecisionRule : Q>K ;RejectHs



Otherwise ; Accept Hs

Where, m : the number of parameter estimated in the model. Based on the residual

results, if the model is inadequate, a new model can be easily derived.

3.6.4 Minimum Mean Square Error Forecasts

In forecasting, one objective is to produce an optimum forecast that has no

elror or as little effor as possible, which leads us to the minimum mean square error

forecast. This forecast will produce and optimum future value with the minimum error

in terms of the mean square error criterion.

Minimum Mean Square Error Forecasts for ARIMA models

Consider the general nonstationary AzuMA (p, d, q) model with d * 0, i.e,

q(Bxr-B)d z, -qB1q Q.n)
Because the model is stationary, a moving average representation,

Z,=UQfu,

: o, *vr4_r+vI2at1+ ".., (3.1 8)

Where

V@)=Lr,ut =o@)
j=o Q@)

(3.1e)

Andl4o:1.Fort:n*1,

(3.20)

Suppose that at time t : n one have the observations Zr, Zn-1, Zr-2, ...., Zl and

wish to forecast /-step ahead of future value Znal ds a linear combination of the

observation Zn,Zn-t!,Zn-2,..... Because21fort:n, n-1,n-2,... canallbewrittenin

the form of (3.18), Let the minimum mean square error forecast 2,111 o, Z,*, be

21t1-rttio,+Vi.ran_r+t1.i*ran_2+.... (3.2t)

Where the yj,arcto be determined. The mean.square error of the forecast is

l-l
E(z*,-2,(t))' = oi\v,? +oi\1v,., -vi.,f,

j=0 j=0

Zn*r=f* ,r,*,-,
j=0



Which is easily seen to be minimized when f,*.=Vr*i.Hence,

2,(l) - vta, * v r *td,_r + \r t +2an_2 + ....

Using (3.20) and that

E(q,*i I Z,,Zn-1,...) = {3,., j > O,

(3.22)

(3.24)

(3.2s)

(3.26)

E(a ni / Z n, Z n_p...) = Va, * V m * oo_, * V *z + anl + ...

Thus, the minimum mean square error forecast of zn+t is given by its
conditional expectation. That is,

Z,A=42*r/Z,,Zo_1,....) e.23)

2,111 irusually read as the l-step ahead forecast of Znal at the forecast origin

n. The forecast error is

e,(l) = Z,*r - 2,111 =lV,o,*,_,

l-1

l-l

.i=0

l'

Because E (e"(l)l zt, t < n) : 0, the forecast is unbiased with the error variance

For a normal process, the (1- a) 100% forecast limits are

l_l
Var(e,tt)) = olZW,?

j=0

:i

z"(l)! N% r*Zrr,? oo,

Where N-, is the standard normal deviate such that P (N> N7z 1-'

There forecast error erQ) as shown (3.24) is a linear combination of the future

random shocks entering the system after time n. Specifically, the one-step ahead

forecast error is

e,(l) - Z,*, - 2,711:0n+t (3.27)

Thus, the one-step ahead forecast effors are independent, which implies that

2,O is indeed the best forecast of Zn*1. Otherwise, if one-step ahead forecast errors

are correlated, then one can construct a forecast kn*r of Qn+r from the available

effors ct,v ctn-1, ctn-2, ... and hence improve the forecast of 261 by simple using

,r):%
/2/L
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Z.(l)+dn*, as the forecast. The forecast error for longer lead times, however, are

correlated. This correlation is true for the forecast errors

e,(l) - z,*, - 2,111 = a,+t,v1an+r_r *v>tdn+r Q .2g)

And, e,-r(l)=Zn*r-j-2,-r{t)=an+t_i*Vtan+r_r+....+Vr_tan_i+t e.2g)

Which are made at the same lead time I but different origins n and n-j for j<L It is
also true for the forecast errors for different lead time made from the same time origin.

Minimum Mean Square Emor Forecasts for ARIMA Models

Consider the general nonstationary ARIMA (p, d, q) model with d * 0, i.e.,

NB\L-B)* Z, -ilB)q (3.30)

Where A(B): (l - hB - . ... - hnl1 is a stationary AR operatorand 0(B) : (1-018

0oBo ) is an invertible MA operator, respectively. Although for this process the

mean and the second-order moments such as the variance and the autocovariance

functions vary over time. The complete evolution of the process is completely

determined by a finite number of fixed parameters. The forecast of the process as the

estimation of a function of these parameters and obtain the minimum mean square

error forecast using a Bayseina argument. Using this approach with respect to the

mean square error criterion, which corresponds to a squared los function, when the

series is known up to time n, the optimal forecast of Zn*r is given by its conditional

expectation E (Z"*tl Zr,Zr-t....). The minimum mean square error forecast for the

stationary ARMA model discussed is, of course, a special square case of the forecast

for the ARIMA (p,d,q) model with d:0.
To derive the variance of the forecast for the general ARIMA model, the

model at time t+l in an AR representation that exists because the model is invertible.

Thus, zt/,B)Z,*r =4*r (3.31)

Where _ 0@)Q - B)o
(3.32)

0(B)
tt(B) = t-i n,Bi

j=r

Equivalently, L o,r,.,-itot+r
j=r

Z,*t =

Apply the operator, 1+1+ YrB+...+Y,.rB-l

(r.rrl



to (3.33) and obtain

where ns : - I and Yff=l. It can be shown that

- /-l l-l

II friVr,Z,*t-i_r +> Yr,a,*r_r,
j=0 k=0 j=0

- /-l * /-l

I > ft iYpzt+t-i-* - froZt+t+ I> fr ,-r*i-,Y,2,-i*,
j=0 k=0 m-t i=O

t

:0 (3.34)

(3.3s)

(3.36)

(3.37)

(3.38)

(3.3e)

(3.40)

Choosing 7 weights Z o*_,Y: 0, form : 1,2, ..... , l -I
m

l-l

Z,*r o? +L Y,o,*,,
l-l

,=0

l-l
Where, o? =Zo,-r*,-rY,

,=0

Thus, given Z,tfor t ( n

Z,(l)= E(Z,*rl Z,1an)

=irc,(l)Zau
j=r

Because E (an*i / Zt ,t <n) : 0 for j > 0. The forecast error is

er|) : Zr*t- 2rQ)
il

=IYo ,Ll I n+t-l
j=0

Where the ! weights, by (3.36) can be calculated recursively from the z/ weights as

follow.

Yj
j-1

\n,-,Y i:1,....,1 - l (3.41).
,=0

3.7 Seasonal Time Series Models

In this section, seasonal time series are discussed. These models were

developed by Box and Jenkins (1976) and have been successfully applied to many

time series with seasonal variation.



3.7.1 The Seasonal Autoregressive Process of Order p, SAR (p)

The seasonal autoregressive process of order P(1) if s is the number or

observation per seasonal period then the order of the AR process is an integer multiple

of s and (2) the non-zero coefficents are those with subscripts that are an integer

multiple of s.

The SAR (P) model is

Zt: ArZt-r+AzrZtzr* " ' + Apr Z;pr * as (3.42)

Where, P is the largest multiple of s presented in the model. To provide special

notation for the seasonal model, and so if we let

@ir: @i, e.43)
So that Equation (3.42) become,

2,: @rZ,-r* QzZt-zr't " ' + Qo 2, * + a, (3.44)

referred to as seasonal AR process of order P. the seasonal autoregressive model in

equation (3.44) expresses the current value of the process 7a as finite weighted sum of
P previous values Zt-r, Zt 2r, ... ..., Zr_p, of the process plus random shock ay.

Here, Ela,]

Y[al

Covlal, a1,l

:0
: efu/]: o]
:Efa,, a,l:0

for all t.

for all t, and

foralltft'

The Autoregressive Function of SAR (P) Process is

W: @flr-;t @zT*-zr+ ' ' ' * Qplups; k: 1,2,...,Ps (3.45)

The autocorrelation function (ACF) satisfies the difference equation.

Pt: @rPs * Qzlzr+ ' ' ' * @ppp"; k: I,2,...,Ps (3.46)

The autocorrelation function (ACF) will be non-zero only lags that are integer

multiples of s. The autocorrelation at seasonal lags persists indefinitely, although with

declining intensity.

The First Order Seasonal Autoregressive SAR (1) Process

Consider the SAR (1) model (P:1)
' 2,: @127-r+ q.,

Where, oTts are random shocks satisfuing with usual assumptions.

The autocorrelation function of the sAR (l) process is obtained by

substituting P:l in Equation (3.45).



The Autocovariance Function is

It: @tlus ; k:1,2,...,Ps

The autocovariance function of the SAR (1) process is

2

The autocorrelation function of the SAR (1) process is,

/k

Pt

oa

l- (Dr2

(D,t yo

0

1

(D,t

0

; k:0

i k: s,2s, 3s, ...

; k:0, s, 2s, 3s, ...

; k:0
; k: s,2s, 3s, ...

; k* 0, s,2s, 3s, ..

;k:2s

.t

Therefore, the autocovariance and the autocorrelation are non-zero at lags that

are integer multiples of s.

The Second Order Seasonal Autoregressive SAR (2) Process

Consider SAR (2) model (P:2)

21: Q12s r* @zZt-zrtat

where, ay are random shocks satisffing with usual assumptions. The

autocovariance function of the SAR (2) model is obtained by substituting P:2 in

Equation (3.45).

The Autocovariance Function is

T*: QtYur]- Qzluz, ; k: I,2,...,Ps

Therefore, the autocovarinance function of the SAR (2) process is

1-@: 2
oq

l+ (Dz (1- <D2)2- O12
;k:0

(Dr

ft:s
1-(Dr

To

(ar' )l- a6, IU-o' ' )
(Dt/r-r* @zTuz,

0

;k: 3s,4s, ...

)k: 0, s, 2s, 3s, .. .

lk

To



The autocorrelation function of the SAR (1) process is,

I

@r

| -Qz
(0,2

*@r
I -Oz

QrPu, * Qzpr-z'

0

;k:2s

;k:3s,4s, "..

;k * 0, s, 2s, 3s, ...

; k:0
;k:g

Pr

i

Therefore, the autocovariance and the autocorrelation function are non-zero at

lags that are integer multiple of s.

3.7.2 General Multiplicative Seasonal Models

The fundamental fact about seasonal time series with period s, is that

observation which are is intervals apart arc similar. Therefore, one might expect that

the operation B'X1 : Xr, would play a particularly important role in the analysis of

seasonal series, and furthemore, since nonstationarity is to be expected in the series

X,, &-,, Xt-zr, ...., the simplifying operation V'{:(1-B)X':X, -\ might be

useful.

The seasonal effect implies that an observation for a particular quarter, say,

second quarter, is related to the observation for second quarters of previous years.

Suppose the tth observation & is for the second quarters. We might be able to link this

observation X to observations in second quarters of previous years by a model of the

form

qd)v34:o(B')q

Where S : 12, for monthly series and s : 4 fot quarterly series. V, :l-Bs and

O(Bs), O(Bs) are polynomials in Bs of degrees P and Q, respectively, and satisffing

invertibility conditions. Similarly, a model

qo'lWr,:qd;q,-,

might be used to link the current behavior for first quarter with previous first quarter

observations, and so on, for each of the first quarters. Moreover, it would usually be



- reasonable to assume that the parameters @ and @ contained in these monthly

models would be approximately the same for each quarter. Now the error components

crl, crt-I, ... in these models would not in general be uncorrelated. For example, the

value in last quarter, 2000, while related to previous last quarter values, would also be

related to value in first, second and third quarters of 2000 etc. Thus we would expect

that would be related to o1-1 and at-zetc. Therefore, to take care the such relationships,

we introduce a second model

@@)!dq:0@)a,

where no a1 is a white noise process, and S (B) and 0 (B) are polynomials in B of

degrees p and q, respectively, and satisfring stationary and invertible conditions and

V:Y:1-8.
We finally obtain a general multiplicative model

0(B)o.(B )Vdvro4 : oq(B)oa(B') u,

Where for this particular example, s : 12 for monthly series and s : 4 for quarterly

series. Also the subscripts p, P, e, Q have been added to remind the orders of the

various operators. The resulting multiplicative process will be said to be of order

(p,d,q) x (P,D,Q)'. A similar argument can be used to obtain models with three or

more periodic components to take care of multiple seasonalities.

3.7.3 ACF and PACF for Seasonal Models

In identifuing seasonal time series, the standard ACF analysis is still the most

useful method. ACF and PACF for seasonal models are more complicated. In general,

the season and nonseasonal autoregressive components have their PACF cutting off at

the seasonal and nonseasonal lags. On the other hand, the seasonal and nonseasonal

moving average components produce PACF which shows exponential decays and I or

damped sine waves at the seasonal and nonseasonal lags.

3.7.3 Model Building and Forecasting for Seasonal Models

For identification, estimation and diagnostic checking of model of seasonal

data, no new principles are needed to do this, but merely and application of procedure

and ideas we have already discussed in detail for non-seasonal data.

af



The most important aspect in the conduct of time series analysis is the use of

past and present data or available observations to predict future values. The use

available observations at time "t" to predict or forecast values at some future time

"t+L" can serye many pu{pose of economic and business planning. The short term

forecasts will be performed by using adequately fitted model based on the results of

model building. The actual values will also be applied for the validation of the

forecast values of forecasting period.

Because seasonal models are special forms of the ARIMA described in

sections 3.6,the model identification, parameter estimation, diagnostic checking and

forecasting for these models follow the same general methods introduced in section

3.6.1, 3.6.2, 3.6.3 and 3.6.4.



- CHAPTER IV

RESULTS AND FINDINGS

The seasonal variation of production series in HISEM Co., Ltd from January

2013 to December 2017 is measured by seasonal index. The analysis is done by the

Ratio to Moving Average method.

4.1 Test of Seasonality

Test of seasonality for monthly production series from January 2013 to

December 2017 are calculated in the following.

Production series for 100 Kilo Volt Ampere

The result of calculation for testing the seasonality in the production series for

100 KVA (2013-2017) are shown in Table (4.1).

Table (4.1)

ANOVA Table for Production Series for 100 KVA (2013-2017)

Between Months 498.85

Source of
variation

Between Years

Error

Sum of
square

1477.5

484.9

Degree of
Freedom

11

4

Mean Square
Error
45.35

369.37s

F-Ratio

4.1.1.51

44 Lt.0205

Total 246t.25 s9

At 5% level of significance, the critical value K: F1o.os,r1,e+y is 2.01. Since the

computed F-value : 4.1151 is greater than K: 2.01, it can be calculated that the

monthly data of production series for 100 KVA exists seasonality.

Production series for 160 Kilo Volt Ampere

The result of calculation for testing the seasonality in the production series for

160 KVA (2013-2017) are shown in Table (4.2).



Table (4.2)

ANOVA Table for Production Series for 160 KVA Q013-2017)

Between Months 399.73

Source of
variation

Source of
variation

Sum of
square

Sum of
square

Degree of
Freedom

11

Degree of
Freedom

l1

4

44

59

Mean Square
Error
36.34

Mean Square
Error
65.58

388.9

15.03

F-Ratio

2.2529

F-Ratio

4.36

Between Years 1785.67 4 446.42

Error 709.93 44 16.r3

Total 2895.33 59

At 5yo level of significance, the critical value K: F1o.os,r L,++1 is 2.01 . Since the

computed F-value : 2.2529 is greater than K: 2.01, it can be calculated that the

monthly data of production series for 160 KVA exists seasonality.

Production series for 400 Kilo Volt Ampere

' The result of calculation for testing the seasonality in the production series for

400 KVA (2013-2017) are shown in Table (4.3).

Table (4.3)

ANOVA Table for Production Series for 400 KVA Q0l3-2017)
;i
:i

Between Months 72t.38

Between Years 1555.6

Error 66r.20

Total 293 8.1 8

At 5% level of significance, the critical value K: F1o.os,r1,++; is 2.01 . Since the

computed F-value : 4.36 is greater than K: 2.01, it can be calculated that the monthly

data of production series for 400 KVA exists seasonality.

Production series for 2000 Kilo Volt Ampere

The result of calculation for testing the seasonality in the production series for

2000 KVA (2013-2017) are shown in Table (4.4).



Table (4.4)

ANOVA Table for Production Series for 2000 KVA Q0l3-2017)

Source of
variation

Sum of
square

Degree of
Freedom

Mean Square
Error

F-Ratio

6.18Between Months 631.4

Between Years s03.07

11

4

408.93 44

1s43.4 59

57.4

125.77

9.29Error

Total

At5% level of significance, the critical value K: F1o.os,rr,++1 is 2.01. Since the

computed F-value : 6. 1 8 is greater than K: 2.01 , it can be calculated that the monthly

data of production series for 2000 KVA exists seasonality.

4.2 Seasonal Variation

The seasonal variation of monthly production series from 2013 to 2017 are

computed by the ratio to moving averages method.

Production Series for 100 Kilo Volt Ampere Q0l3-2017)

The seasonal variation of monthly production series from 2013 to 2017 is

computed by the ratio to moving average method under multiplicative decomposition

of time series. The series consists of 60 observations and it was shown in Appendix A.

The results of seasonal index are shown in Table (4.5). The lowest value of seasonal

index is in September and the highest is in November. The months of February, June,

October and December have the larger seasonal indexes than other months. The peak

period is November with the seasonal index of production series as 113 % while

September the lowest month withSTo/o.



Table (4.5)

Seasonal Indexes for production series for 100 KVA by using the Ratio to

Moving Average Method (2013-2017)

Month Seasonal lnd,ex

January 95

February 105

March

April

May

June

July

August

September

October

November

December

99

92

98

108

89

99

87

106

109

113

'1

Production Series for 160 KiIo VoIt Ampere Q0l3-2017)

The seasonal variation of monthly production series from 2013 to 2017 is

computed by the ratio to moving average method under multiplicative decomposition

of time series. The series consists of 60 observations and it was shown in Appendix A.

The results of seasonal index are shown in Table (a.Q. The lowest value of seasonal

index is in August and the highest is in December. The months of February, June,

October and November have the larger seasonal indexes than other months. The peak

period is December with the seasonal index of production series as 114 % while

August the lowest month with97Yo.



Table (4.6)

Seasonal rndexes for production series for 160 KvA by using the Ratio to

Moving Average Method e0l3-2017)
Month Seasonal Index

January 93

February 108

March

April

May

June

July

August

September

October

November

December

98

97

96

105

93

87

92

107

110

114

Production Series for 400 Kilo VoIt Ampere e0l3-2017)
The seasonal variation of monthly production series from 2013 to 2017 is

computed by the ratio to moving average method under multiplicative decomposition

of time series. The series consists of 60 observations and it was shown in Appendix A.
The results of seasonal index are shown in Table (4.7). The lowest value of seasonal

index is in September and the highest is in November. The months of February,

March, June, October and December have the larger seasonal indexes than other

months. The peak period is November with the seasonal index of production series as

124% while September the lowest month withl2yo



Tabte (4.7)

Seasonal Indexes for production series for 400 KVA by using the Ratio to

Moving Average Method Q0l3-2017)

Month Seasonal Index

January 86

February

March

April

May

June

July

103

100

88

99

109

90

il

August 90

September 82

October rr6

November r24

December 113

Production Series for 2000 Kilo VoIt Ampere Q0l3A0fi)
The seasonal variation of monthly production series from 2013 to 2017 is

computed by the ratio to moving average method under multiplicative decomposition

of time series. The series consists of 60 observations and it was shown in Appendix A.

The results of seasonal index are shown in Table (a.8). The lowest value of seasonal

index is in August and the highest is in November. The months of January, May, June,

October and December have the larger seasonal indexes than other months. The peak

period is November with the seasonal index of production series as 136Yo while

August the lowest month with82%o.



Table (4.8)

Seasonal Indexes for production series for 2000 KVA by using the Ratio to

Moving Average Method Q0l3-2017)

Month Seasonal Index

January 101

February 89

March 92

April 93

May

June

July

100

96

95

1

August 82

September 94

October 109

November 136

December 113

4.3 The Box-Jenkins Seasonal ARIMA Model of Production Series for 100

KVA

The monthly data of production series for 100 KVA covers 5 years, from

January, 2013 to December 2017. The series consists of 60 observations.

4.3.1 Identification

For the identification of the order p and q, the (autocorrelation function) ACF

and (partial autocorrelation function) PACF of the number of production series for

100 KVA are computed and plotted as shown in the following Tables and Figures.



Table (4.9)

Estimated Autocorrelation Function for the original series of Production for 100

KiIo VoIt Ampere

pkfor {Zg} Z =30.25 S, =6.459 n:60

Lagk 1 2 3 4 5 6 7 I 9 10 11 12

L-L2

S.E

73-24

s.E

.643

"126

.161

"112

503

.125

081

111

.376

.124

.045

.1'10

.378

.123

.053

.109

.307

.122

.024

.108

.390

.120

.052

.106

.252

.1 19

-.o71

.105

.193

.118

-.062

.104

.134

.117

-.067

.102

.268

.1 16

-.467

.10'l

.294

.115

-.108

.100

89101112

.345

.'t14

-.102

.098

LrgFe{ f *6lidea*e Lintt
*entl{*ffic* LkH&

.038

.129

.024

.129

Figure (4.1)

Sample Autocorrelation Function for Monthly Production Series for 100 Kilo

Volt Ampere
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Table (4.10)

Estimated Partial Autocorrelation Function for the original series of Production

for 100 Kilo Volt Ampere

Ap1, for {Zr} Z =30.25 S, = 6.459 n:60

ii

Lagk 1 2 3 4 5 6 7

t-72
S.E

L3-24

s.E

.643

.129

-.254

.129

.007

.129

.069

.129

-.182

.129

-.063

.129

-.038

.129

.109

.129

.01 0

.129

-.070

.129

.153

.129

-.103

.129

.165

.129

-.101

.129

-.017

.129

-.028

.129

.233

.129

.001

.129

.239

.129

.206

.129

.106

.129

-.061

.129



Figure (4.2)

Sample Partial Autocorrelation Function for Monthly Production Series for 100

Kilo Volt Ampere
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The sample ACF decays slowly and the sample PACF has a single large spike

atlag 1. These values indicated that the series is nonstationary and that differencing is

called for. To remove nonstationary, the series is seasonal differenced and the sample

ACF and PACF of the seasonal differenced series (l-BL1Zt were computed as shown

in Table (4.11) and Table (4.12). They were displayed in Figure (4.3) and Figure (4.4)

Table (4.11)

Estimated Autocorrelation Function for Seasonal First Difference Series of

Production for 100 Kilo Volt Ampere

ppfor {Wt = (L - B1\Z} W - 2.87 Sw = 5.659 n:48

,

I,L(}
iaxt4
l:-

ii

Lagk 1 2 3 4 5 6 7 I 9 10 11 12

r-12

s.E

L3-24

s.E

.424

.140

.o28

.121

.266

.138

.017

.119

.299

.137

-.o29

.117

.069

.134

.060

.114

163

132

021

112

-.059

.127

.o41

.106

.188

.126

-.o71

.104

.297

.135

-.041

.115

.248

.131

-.159

.110

.018

.129

-.065

.108

.224

.124

-.219

.102

-.123

.122

-.211

.100



,- Figure (4.3)

Sample Autocorrelation Function for Seasonal First Difference Series of

Production Series for 100 KiIo VoIt Ampere
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Table (4.12)

Estimated Partial Autocorrelation Function for Seasonal First Difference Series

of Production for 100 Kilo Volt Ampere

?plrfor tWt = Q. - BLIZt\ W = 2.87 S., = 5.659 n:48

t-12
s.E

L3-24

s.E

.424

.144

.096

.'144

.105

.144

-.105

.144

.189

.144

.079

.'144

129

144

102

144

-.172

.144

-.1 83

.144

.128

.144

-.041

.144

-.205

.144

-.040

.144

062

144

017

'144

.229

.144

-.o54

.'144

.127

.144

-.174

.144

-.327

.144

-.213

.144



Figure (4.4)

Sample Partial Autocoruelation Function for Seasonal Birst Difference Series of

Production Series for 100 KiIo Volt Ampere
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The sample ACF is slowly decay and the sample PACF cuts off after lag 1

because none of the sample PACF value is significant expect thatlag 12.

The suggested series (l-Bl1zt might be described by SAR (1) process as a

tentative model for the series

Since_['/ - 2.87, S*:5.659,n: 48

The t value of t: # - #= 3.5136
la /,[+e

Which is significant and thus deterministic trend 0o is needed. Hence, the tentative

model for the series following SAR(I) process:

0-aB11Zs:0s * a6

4.3.2 Parameter Estimation for SAR (1) model

Using SAR (1) model, the estimated parameters with their statistics were

shown in Table (4.13). According to this table, the estimated parameter of (D is 0.525,

since their p-value is 0.000, there is evidence to reject the null hypothesis: @ - 0.



- Table (4.13)

Estimated Parameters and Model Statistics for SAR(I) Model of Production

Series for 100 KVA

Estimate SE t Sie.

l

Constant 29.4t3 1.318 22.32r 0.000

@ 0.525 0.122 4.3t5 0.000

The following estimated model was obtained

(t-0.525 81',) Z r: 29.413 * a,

(0.122) (1.318)

The estimation of the SAR (l) model of production series for 100 KVA give

0o = 29.4\3 with estimated standard error 1.318 and @ - 0.525 with the estimated

standard error 0.122. Under the null hypothesis H6: (D = 0 the test statistics t is 4.315

with p-value is 0.000. Hence, there is evidence to reject the null hypothesis.

Moreover, the sample ACFs and the sample PACFs of residual for the above

tentative model were shown in Table (4.14) and (a.15), respectively. They were

showed in Figure @.5) and (4.Q.

Table (4.14)

Estimated Autocorrelation Function of Residual for SAR(I) Model of Production

Series for 100 KVA

Lagk 1 2 3 4 '5 6 7 89101112
L-L2

s.E

t3-24

S.E

.620

.129

-.031

.235

.483

.172

-.076

.236

.253

.218

-.108

.237

.287

.223

-.097

.238

.220

.229

-.234

.239

.091

.232

-.190

.243

.001

.233

-.165

.245

.136

.233

-.190

.247

-.008

.235

-.223

.253

.411

.193

-j02
.236

.372

.207

-.108

.237

.123

.234

-.231

.249



Figure (4.5)

Sample Autocorrelation Function of Residual values for SAR(I) Model of

Production Series for 100 KVA

-J

Lag

Table (4.15)

Estimated Partial Autocorrelation Function of Residual for SAR(I) Model of

Production Series for 100 KVA
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s.E
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s.E
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Figure (4.6)

Sample Partial Autocorrelation Function of Residual values for SAR(I) Model of

Production Series for 100 KVA
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The Sample ACF was exponential decay and the sample PACF cuts off after lag

1 and these model exhibit a pattern. So, the residual series are not white noise process.

Since, another tentative seasonal ARIMA (1, 0, 0) x (1-,1,0)12 model considered, that

IS

0-aB11zt:ao*Q-@B)as

Using multiplicative seasonal ARIMA (1, 0, 0) x (L,L,O)p model, the estimated

parameters with their statistics were shown in Table (4.16). According to this table,

the estimated parameter of @ is 0.568 since their p-value is 0.000, there is evidence to

reject the null hypothesis:0 = 0 and the estimated parameter of @ is -0.378, since

their p-value is 0.011, there is evidence to reject the null hypothesis: (D = 0.

Table (4.16)

Estimated Parameters and Model Statistics for seasonal ARIMA (1,0, 0) x

(l,l,O)n Model of Production for 100 KVA

Estimate SE Sig

Constant 2.880 t.2t7 2.367 0.022

0.568 0.13 1 4.350 0.000

t

a
o -0.378 0.r43 -2_642 0.011



- 4.3.3 Diagnostic Checking

To check model adequacy, in Table (4.17) and Table(4.18) was shown the

residual ACF and PACF of the modified model. They were shown in Figure (4.7) and

(4.8), along with the confidence interval.

rn(d) + zSElyn@))

Where,

{E[yu@)]
7

...ln

Table (4.17)

Estimated Autocorrelation Function of Residual for seasonal ARIMA (1,0' 0) x

(1,L,O)12 Model of Production for 100 KVA

Lagk 1 2 3 4 5 6 7 89101112
L-L2

S.E

13-24

S.E

-.048

.144

.037

.178

.014

.145

-.o29

.178

.000

.145

-.046

.178

.207

.145

-.006

.178

-.o47

.158

-.062

.'t 83

-.198

.'158

.077

.184

.256

.170

-.066

.185

-.051

.178

-.166

.186

-.096

.151

.035

.178

.133

.152

.093

.179

.161

.154

-.180

,180

.229

.163

.081

.184

il



- Figure (4.7)

Sample Autocorrelation Function of Residual values for seasonal ARIMA (1' 0' 0)

x (1,1,0)12 Model of Production for 100 KVA
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Table (4.18)

Estimated Partial Autocorrelation Function of Residual for seasonal ARIMA

(1,0,0) x (L,L,0)12 Model of Production for 100 KVA

-1

Lagk 1 2 3 4 5 678910 l',! 12

1-L2

s.E

L3-24

s.E

-.048

.144

.035

.144

.001

.144

-.073

.144

.207

.144

.078

.144

-.079

.144

-.151

.'144

.128

.144

.049

.144

-.084

.144

-.058

.144

.184

.144

.027

.144

.012

.144

-.'150

.144

.179

.144

-.058

.144

-.186

.'144

.049

.144

.270

.144

-.077

.144

-.026

.144

-.244

.144



,- Figure (4.8)

Sample Partial Autocorrelation Function of Residual values for seasonal ARIMA

(1, 0, 0) x (L,1,0)12 Model of Production for 100 KVA
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Values of the residual ACF of seasonal ARIMA (1, 0, 0) x (1,1,0)p are all

small and exhibit no patterns. And, the values of residual PACF of modified model lie

inside the confidence limits. This suggested that this model adequate. Hence, the

autocorrelation of @ can be taken as significant different from zero.

An overall check is performed by using the test statistic,

Q:nZfr=rYfr(6r)
As the result of p value, the observed value of Q is 16.864 and it is not

significant at 5 Yo significant level p-value is 0.394.

Thus, the fiued seasonal ARIMA (1,0,0) x (1,1,0)12 model is judged adequate

for the series.

4.4 The Box-Jenkins Seasonal ARIMA Model of Production Series for 160

KVA

The monthly data of production series for 160 KVA covers 5 years, from

January, 2013 to December 2017. The series consists of 60 observations.



4.4.1ldentification

For the identification of the order p and q, the (autocorrelation function) ACF

and (partial autocorrelation function) PACF of the number of production series for

160 KVA are computed and plotted as shown in the following Tables and Figures.

Table (4.19)

Estimated Autocorrelation Function for the original series of Production for 160

Kilo Volt Ampere

ppfor {Zs} z -25.33 Sz =7 '005 n:60

Lagk 1 2 3 4 5 6 7 I I 10 11 12

L-L2

S.E

13-24

s.E

.656

.126

-.019

.112

587

125

065

111

.466

.123

-.o77

.109

.308

.120

.o25

.106

.149

.118

.030

.104

098

1',t7

034

102

.019

.115

.065

.100

.450

.124

-.076

.'110

.354

.122

-.026

.108

165

119

039

105

.081

.1 16

.015

.101

-.048

.1',14

.087

.098
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Figure (4.9)

Sample Autocorrelation Function for Monthly Production Series for 160 Kilo

Volt Ampere
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- Table (4.21)

Estimated Autocorrelation Function for Seasonal First Difference Series of

Production for 160 KiIo VoIt Ampere

ppfor {Wg 1-872)Ztj W=4.2L S- = 8.098 n:48
Lagk 1 2 3 4 56789101112
L-72

s.E

L3-24

S.E

.426

.140

-.152

.121

.312

.135

-.154

.115

.239

.134

-.'100

.114

-.069

.131

-.025

.110

-.025

.129

-.115

.108

.127

-.010

.106

-.077

.126

-.'125

.104

-.194

.124

-.103

.102

-.442

.122

-.105

.100

.412

.138

-.237

.119

.286

.137

-.132

.117

.112

.132

-.107

.112

Figure (4.11)

Sample Autocorrelation Function for Seasonal First Difference Series of

Production Series for 160 Kilo Volt Ampere
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%!*-J Table (4.22)

Estimated Partial Autocorrelation Function for Seasonal First Difference Series

of Production for 160 KiIo Volt Ampere

imrfor {Wt = (7 - B1lZt} W = 4.2L Sw = 8.098 n:48

Lagk 1 2 3 4 5 6 7 8 I 10 11 12

L-t2

S.E

L3-24

s.E

.426

.144

.225

.144

.282

.144

-.008

.144

.053

.144

.090

.144

129

144

132

144

.031

.144

.035

.144

-.124

.144

-.154

.144

-.247

.144

-.152

.144

-.006

.144

-.081

.144

.029

.144

.114

.144

-.029

.144

-.o97

.144

-.113

.144

-.203

.144

-.400

.144

-.225

.144

Uilper {&nfrdenc* Li,r(
Lqe'er Confi{tence Lin'rit

Figure (4.12)

Sample Partial Autocorelation Function for Seasonal First Difference Series of

Production Series for 160 Kilo Volt Ampere
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The sample ACF is damped sine wave and the sample PACF cuts offafter lag

1 because none of the sample PACF value is significant expect thatlag12.

The suggested series (l-Bl\zt might be described by SAR (1) process as a

tentative model for the series

Since W - 4.21,5.:8.098, n: 48

The t value of t: 
%= ffi= 3.6018



Which is significant and thus deterministic trend 0o is needed. Hence, the tentative

model for the series following SAR(1) process:

O-oB11Zg: 0s * as

4.4.2 Parameter Estimation for SAR (1) model r

Using SAR (1) model, the estimated parameters with their statistics were

shown in Table (4.23). According to this table, the estimated parameter of @ is -0.103,

since their p-value is 0.559, there is no evidence to reject the null hypothesis: @ = 0.

Table (4.23)

Estimated Parameters and Model Statistics for SAR(I) Model of Production

Series for 160 KVA

Estimate SE Sie.t
Constant 2s.344 0.874 29.002 0.000

1

(D -0.103 0.175 -0.587 0.559

The following estimated model was obtained

(1+ 0.1038,,)Zr:25.344 * a,

(0.17s) (0.874)

The estimation of the SAR (1) model of production series for 160 KVA give 96 =
25.344 with estimated standard error 0.874 and (D = -0.103 with the estimated

standard error 0.175. Under the null hypothesis fls: (D = 0 the test statistics t is -0.587

with p-value is 0.559. Hence, there is no evidence to reject the null hypothesis.

Moreover, the sample ACFs and the sample PACFs of residual for the above

tentative model were shown in Table(4.24) and (4.25), respectively. They were

showed in Figure (4.13) and(4.14).



Table (4.24)

Estimated Autocorrelation Function of Residual for SAR(I) Model of Production

Series for 160 KVA

Lagk 1 2 3 4 5 6 7 89101112
L-72 .661

s.E 125

t3-24 .o22

s.E .262

.591

.177

-.031

.262

.453

.207

-.058

.262

.473

.223

-.059

.262

.363

.239

-.o12

.262

.179

.258

.041

.263

.127

.260

.039

.263

.115

.261

.o27

.263

.065

.262

,078

.263

.023

.262

.098

.263

.328 .192

.248 .255

.042 .O43

.262 .263

Figure (4.f3)

Sample Autocorrelation Function of Residual values for SAR(L) Model of

Production Series for 160 KVA
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Table (4.25)

Estimated Partial Autocorrelation Function of Residual for SAR(1) Model of

Production Series for 160 KVA

Lagk 1 2 3 4 5 6 7 I I '10 11 12

1-L2

s.E

L3-24

S.E

661

129

058

129

.273

.129

-102

.129

192

129

052

129

-.062

.129

.088

.129

-.135

.129

-.024

.129

.011

.129

.008

.129

.0't3

.129

-.034

.129

-.011

.129

-.086

.129

.003

.129

.094

.129

-.062

.129

.047

"129

-.o23

.129

-.045

.129

-.007

.129

.138

.129



Figure (4.14)

Sample Partial Autocorrelation Function of Residual values for SAR(I) Model of

Production Series for 160 KVA
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The Sample ACF was exponential decay and the sample PACF cuts off after lag

1 and these model exhibit a pattern. So, the residual series are not white noise process.

Since, another tentative seasonal ARIMA (1, 0, 0) x(L,1',0)p model considered, that

ls

Q-@81\Zt: oo * (L * aB)as

Using multiplicative seasonal ARIMA (1, 0, 0) x(7,L,0)p model, the estimated

parameters with their statistics were shown in Table (4.26). According to this table,

the estimated parameter of A is 0.451 since their p-value is 0.002, there is evidence to

reject the null hypothesis: @ = 0 and the estimated parameter of @ is -0.651, since

their p-value is 0.000, there is evidence to reject the null hypothesis: @ : 0.

Table (4.26)

Estimated Parameters and Model Statistics for seasonal ARIMA (1r 0' 0) x

(1,1,0)lzModel of Production for 160 KVA

Estimate

Constant 3.063

0 0.4s1

SE
1.002

0.1 35

3.057

3.33r

Sig.
0.004

0.002

t

(D -0.6s1 0.r29 -5.068 0.000



4.4.3 Diagnostic Checking

To check model adequacy, in Table (4.27) and Table (4.28) was shown the

residual ACF and PACF of the modified model. They were shown in Figure (4.15)

and(4.16), along with the confidence interval.

. yx(d) + z{Elyp(d))
Where,

{ElYu(dr)l = +,,ln

Table (4.27) .--

Estimated Autocorrelation Function of Residual for seasonal ARIMA (1r 0,0) x

(1,1,O)12 Model of Production for 160 KVA

Lagk 1 2 3 4 5 6 7 8 I 10 11 12

1-L2

S.E

13-24

s.E

-.117

.144

.099

.172

.035

.152

-.109

.176

.234

.153

.102

.177

021

163

046

178

-.069

.163

-.o14

.179

.052

.163

-.182

.179

122

164

167

183

-.061

.166

.o25

.189

-.214

.166

-.225

.'189

.210

.146

-.159

.173

.141

.160

-.013

.178

.033

.165

-.160

.186

Figure (4.15)

Sample Autocorrelation Function of Residual values for seasonal ARIMA (1, 0, 0)

x (1,1,0)12 Model of Production for 160 KVA
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Table (4.28)

Estimated Partial Autocorrelation Function of Residual for seasonal ARIMA

(1,0,0) x (1,1,0)12 Model of Production for 160 KYA

Lagk 1 2 3 4 5 6 7 I I 10 11 12

t-12

s.E

13-24

S.E

-.117

.144

-.041

.144

.199

.144

-.143

.144

.083

.144

-.135

.144

.217

.144

.085

.144

188

144

161

144

-.o22

.144

.o27

.144

-.179

.144

-.009

.144

-.070

.'144

-.178

.144

100

144

178

144

.o77

.144

-.048

.144

-.029

.144

-.033

.144

-.278

.144

-.198

.144

Figure (4.16)

Sample Partial Autocorrelation Function of Residual values for seasonal ARIMA

(1,0,0) x (1,1,0)12 Model of Production for 160 KVA
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Values of the residual ACF of seasonal ARIMA (1, 0, 0) x (1,1,0)12 arc all

small and exhibit no pattems. And, the values of residual PACF of modified model lie

inside the confidence limits. This suggested that this model adequate. Hence, the

autocorrelation of@ can be taken as significant different from zero.

An overall check is performed by using the test statistic,

Q: n Z*=ryi (6t)

As the result of p value, the observed value of Q is 16.184 and it is not

significant at 5 Yo significant level p-value is 0.440

:i



Thus, the fitted seasonal ARIMA (1, 0, 0) x (7,7,0)p model is judged adequate

for the series.

4.5 The Box-Jenkins Seasonal ARIMA Model of Production Series for 400

KVA

The monthly data of production series for 400 KVA covers 5 years, from

January, 2A1B b December 2017. The series consists of 60 observations.

4.5.1 Identification

For the identification of the order p and q, the (lutocorrelation function) ACF

and (partial autocorrelation function) PACF of the number of production series for

400 KVA are computed and plotted as shown in the following Tables and Figures.

Table (4.29)

Estimated Autocorrelation Function for the original series of Production for 400

Kilo Volt AmPere

pyfor {Zt} Z =27.72 Sz =7 '057 n:60

Lagk 1 2 3 4 5 6 789101112

L-]-2

S.E

73-24

S.E

.457

.124

.201

.110

.370

.'122

.o97

.'108

.327

.120

.074

.106

.298

.119

.021

.105

.307

.118

.054

.104

.239

.117

-.020

.102

.270

.'t 15

.008

.100

.415

.114

.043

.098

.675

.126

.279

.112

533

125

151

111

.428

.123

.172

.109

.24'.1

.116

-.052

.101

,



Figure (4.17)

Sample Autocorrelation Function for Monthly Production Series for 400 Kilo

Volt Ampere
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Table (4.30)

Estimated Partial Autocorrelation Function for the original series of Production

for 400 Kilo Yolt Ampere

Ay1, for {Zr} z -27.72 Sz =7 '057 n:60

1

Lagk 1 2 3 4 5 6 7 I 9 10 11 12

L-12

S.E

L3-24

S.E

675

129

265

129

.143

.129

-.192

.129

.097

.129

.198

.129

.110

.129

-.095

.129

.010

.129

-.1 33

.129

.o28

.129

-.085

.129

.o82

.129

.038

.129

-.077

.129

-.069

.129

.306

.129

-.105

.129

.o21

.129

.037

.129

.o70

.129

-.044

.129

.097

.129

.113

.129



Figure (4.18)

Sample Partial Autocorrelation f,'unction for Monthly Production Series for 400

Kilo Volt Ampere
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The sample ACF decays slowly and the sample PACF has a single large spike

atlag 1. These values indicated that the series is nonstationary and that differencing is

called for. To remove nonstationary, the series is seasonal differenced and the sample

ACF and PACF of the seasonal differenced series (l-BL\Zt were computed as shown

in Table (4.31) and Table (4.32). They were displayed in Figure (4.19) and Figure

(4.20).

Table (4.31)

Estimated Autocorrelation Function for Seasonal First Difference Series of

Production for 400 Kilo Yolt Ampere

Ppfor {Wt = (L - 872)Zt\ W = 3.35 S* = 4.601 n:48

1-12

S.E

L3-24

S.E

.342

.140

-.151

.121

.214

.138

-.028

.119

155

137

149

117

-.'182

.135

-.019

.115

-.276

.122

.120

.100

-.078

.134

-.062

.114

-.140

.132

-.156

.112

-.030

.131

-.174

.110

-.015

.129

-.o74

.108

.034

.127

-.051

.106

.066

.126

-.050

.104

-.209

.124

.172

.102



Figure (4.19)

Sample Autocorrelation Function for Seasonal First Difference Series of

Production Series for 400 KiIo Volt Ampere
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Table (4.32)

Estimated Partial Autocorrelation Function for Seasonal First Difference Series

of Production for 400 Kilo Volt Ampere

Tplrfor {Wt = (7 - BL\ZI} W = 3.35 S* = 4.601 n:48

10 '11 12

L-L2

s.E

13-24

s.E

.342

.144

.202

.144

'106

144

003

144

-.293

.144

-.064

.144

-.088

.144

-.154

.144

.122

.144

-.132

.144

.071

.144

-.056

.144

-.019

.144

.o74

.144

-.299

.144

.034

.144

-.167

.144

-.103

.144

-.025

.144

-.154

.144

.002

.144

-.229

.144

-.211

.144

-.055

.144



Figure (4.24)

Sample Partial Autocorrelation Function for Seasonal First Difference Series of

Production Series for 400 Kilo Volt Ampere
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The sample ACF is damped sine wave and the sample PACF cuts off after lag

1 because none of the sample PACF values is significant expect that lag 3'and l1

The suggested series (l-BLlZt might be described by SAR (1) process as a

tentative model for the series

Since_t4l - 3.35, S.=4.601,n:48

The t value of t: # - #= 5.0444
/,n r,/+e

Which is significant and thus deterministic trend 0s is needed. Hence, the tentative

model for the series following SAR(1) process:

[-aBlz)Zs: 0s * as

4.5.2 Parameter Estimation for SAR (1) model

Using SAR (1) model, the estimated parameters with their statistics were

shown in Table (4.33). According to this table, the estimated parameter of @ isu0.708,

since their p-value is 0.000, there is evidence to reject the null hypothesist O J6.



Table (4.33)

Estimated Parameters and Model Statistics for SAR(I) Model of Production

Series for 400 KVA

Estimate SE siet
Constant 27.454 1.912 t4.3s8 0.000

(D 0.708 0.109 6.s13 0.000

The following estimated model was obtained

(l-0.70881')zr: 27.454 * o1

(0.r0e) (t.et2)

The estimation of the SAR (1) model of production series for 400 KVA give

0o = 27.454 with estimated standard error 1.912 and (D - 0.708 with the estimated

standard error 0.109. Under the null hypothesis Hs: @ = 0 the test statistics t is 6.513

with p-value is 0.000. Hence, there is evidence to reject the null hypothesis.

Moreover, the sample ACFs and the sample PACFs of residual for the above

tentative model were shown in Table (4.34) and (4.35), respectively. They were

showed in Figure (4.21) and @.22).

Table (4.34)

Estimated Autocorrelation Function of Residual for SAR (1) Model of

Production Series for 400 KVA

I

Lagk 1 23456789101112
L-t2
s.E

13-24

s.E

.653

.129

-.038

.233

.542

.176

-.018

.233

.372

.202

.'106

.233

.286

.213

.054

.234

.280

.219

.020

.234

.194

.225

-.001

.234

.185 .',143 .056 .037 -.076 -.102

.228 .230 .232 .232 .232 .232

-.o54 -.011 -.015 -.019 .084 .052

.234 .235 .235 .235 .235 .235



Figure (4.21)

Sample Autocorrelation x'unction of Residual values for SAR(I) Model of
Production Series for 400 KVA
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Table (4.35)

Estimated Partial Autocorrelation Function of Residual for SAR(I) Model of
Production Series for 400 KVA

7-],2

s.E

L3-24

S.E

.653

.129

.177

.129

.202

.129

.032

.'129

-.076

.129

.146

.129

.009

.129

-.069

.129

37

.irs
-.101

.129

-.075

.129

.005

.129

.028

.129

-.042

.129

.014

.129

.013

.129

-.125

.129

.023

.129

.006

.129

-.061

.129

-.131

.129

.161

.129

-.047

.129

-.003

.129

I



Figure (4.22)

Sample Partial Autocorrelation tr'unction of Residual values for SAR (1) Model

of Production Series for 400 KVA
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The Sample ACF was exponential decay and the sample PACF cuts off after lag

1 and these model exhibit a pattern. So, the residual series are not white noise process.

Since, another tentative seasonal ARIMA (1, 0, 0) x (0,1,0)12 model considered, that

IS

0-BL1z- eo + (L - @B)a,

Using multiplicative seasonal ARIMA (1, 0, 0) x (0,1,0)12 model, the estimated

parameters with their.statistics were shown in Table (4.36).

Table (4.36)

Estimated Parameters and Model Statistics for seasonal ARIMA (1r 0, 0) x

(0,1,0)12 Model of Production for 400 KVA

Estimate SE

1

t Sig.

Constant 3.314 0.952
0.140

3.482 0.001

0.018a 0.345 2.460



The following estimated model was obtained

(t-8114:3.314 + (1 - 0.3458)a1

(0.es2) (0.140)

According to Table (4.36), it can be seen that the estimated parameter of 0is

0.345. Since their p-value of 0.018, there is evidence to reject the null hypothesis:

@=0.

4.5.3 Diagnostic Checking

To check model adequacy, in Table (4.37) and Table (4.38) was shown the

residual ACF and PACF of the modified model. They were shown in Figure (4.23)

and(4.24), along with the confidence interval.

r*(d) + z{E[yk@)]

Where,

SJr[Yu{dr)] = +tln

Table (4.37)

Estimated Autocorrelation Function of Residual for seasonal ARIMA (1,0,0) x

(O,|,O)L2 Model of Production for 400 KVAi

Lagk 1 2 3 4 5 6 7 8 I 10 11 12

L-72

S.E

t3-24

s.E

.195

.144

-.036

.174

-.200

.150

.203

.'t74

.041

.158

-.012

.179

-.019

.161

-.o24

.183

.o28

.161

-.026

.183

-.187

.164

.197

.184

-.030

.144

-.080

.173

-.147

.155

-.070

.179

-.139

.'158

-.111

.179

.029

.161

-.138

.181

.153

.161

-.091

.183

-.193

.169

-.020

.188



Figure (4.23)

Sample Autocorrelation Function of Residual values for seasonal ARIMA (1, 0, 0)

x (0,1,0)12 Model of Production for 400 KVA
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Table (4.38)

Estimated Partial Autocorrelation Function of Residual for seasonal

ARIMA (1,0,0) x (0,1,0)12 Model of Production for 400 KVA

Lagk 1 2 3 4 5 6 7 8 I 10 11 12

1-L2

S.E

L3-24

s.E

-.030

.144

.093

.144

.194

.144

046

144

-.197

.144

.013

.144

-.202

.144

-.111

.144

.130

.144

-.128

.144

-.120

.144

-.085

.144

-.090

.144

-.175

.144

.056

.144

-.154

.144

.008

.144

.115

.144

.100 -.204 -.310

.144 .144 .144

-.176 .005 -.092

.144 .144 .144



Figure (4.24)

Sample Partial Autocorrelation X'unction of Residual values for seasonal ARIMA

(1, 0, 0) x (0,1,0)12 Model of Production for 400 KVA
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Values of the residual ACF of seasonal ARIMA (1, 0, 0) x (0,1,0)p are all

small and exhibit no patterns. And, the values of residual PACF of modified model lie

inside the confidence limits except atlag 12. This suggested that this model adequate.

Hence, the autocorrelation of el canbe taken as significant different from zero.

An overall check is performed by using the test statistic,

q: n f,f=r yft Gt)
As the result of p value, the observed value of Q is l7.754and it is not

significant at 5 %o significant level p-value is 0.405

Thus, the fitted seasonal ARIMA (1,0,0) x (0,1,0)12 model is judged adequate

for the series.

4.6 The Box-Jenkins Seasonal ARIMA Model of Production Series for 2000

KVA

The monthly data of production series for 2000 KVA covers 5 years, from

January, 2Ol3 to December 2017. The series consists of 60 observations.



4.6.1 Identification

For the identification of the order p and q, the (autocorrelation function) ACF

and (partial autocorrelation function) PACF of the number of production series for
2000 KVA are computed and plotted as shown in the following Tables and Figures.

Table (4.39)

Estimated Autocorrelation F'unction for the original series of Production for
2000 Kilo Volt Ampere

pp for {Z} Z -23.90 Sz =5.115 n:60

Lagk 1 2 3 4 5 6 7 I 9 10 11 12

1.-12

S.E

].3-24

S.E

.524

.'126

.250

.112

.388

.125

.023

.111

.155

.124

-.109

.110

133

123

021

109

.122

.122

-.014

.108

.215

.120

.103

.106

.127

.119

.003

.'t05

.007

.118

-.060

.104

.051

.117

-.441

.102

169

116

003

101

.302

.115

.154

.100

.385

.114

.146

.098

Figure (4.25)

Sample Autocorrelation Function for Monthly Production Series for 2000 Kilo

Volt Ampere

**ss KvA
$3 Caetlicierl{

1 *&n{t***e$ L*nit
€*fi*i**tle* Li*lit

fr-(-}
,rf,

-1

l*e$ l\lumh*r



Table (4.40)

Estimated Partial Autocorrelation Function for the original series of Production

for 2000 Kilo VoIt Ampere

Ap1, for {zr} z -23.90 Sz :5.115 n:60

Lagk 1 23456789101112
L-L2

S.E

L3-24

s.E

.524

.129

-.137

.129

.157

.129

-.218

.129

-.140

.129

-.114

.129

.o72

.129

.225

.129

.083

.129

-.089

.129

.149

.129

.021

.129

-.087

.129

-.046

.129

-.164

.129

-.026

.129

164

129

't 09

129

.240

.129

-.181

.129

'157

129

076

129

.098

.129

.051

.129

Figure (4.26)

Sample Partial Autocorrelation Function for Monthly Production Series for 2000

KiIo Volt Ampere
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The sample ACF decays slowly and the sample PACF has a single large spike

atlag l. These values indicated that the series is nonstationary and that differencing is

called for. To remove nonstationary, the series is seasonal differenced and the sample

ACF and PACF of non-seasonal differencing and seasonal differencing were

computed as shown in Table (4.41) and Table (4.42). They were displayed in Figure

(4.27) and Figure (4.28).

,:}



Table (4.41)

Estimated Autocorrelation Function for Non-seasonal and Seasonal First
Difference Series of production for 2000 Kilo vort Ampere

Lagk 1 234567 89101112
1-12

s.E

t3-24

s.E

13-(3

,625

141

137

122

.138

-.127

.118

.o45

137

145

116

.135

-.153

.114

133

149

112

.107

.132

-.052

.110

-.117

.130

-.o75

.108

128

226

106

.032

.127

-.282

.104

.167

.125

171

102

.123

-.o92

.100

.248 -.1

.140

.005

.120

Figure (4.27)

Sample Autocorrelation Function for Non-seasonal and seasonar First
Difference Series of production series for 2000 Kilo vott Ampere
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Table (4.42)
Estimated Partial Autocorrelation Function for Non-seasonal and Seasonal First

Difference series of production for 2000 Kilo volt Ampere

6789101112
7-L2

s.E

1.3-24

S.E

-.625

.146

-.181

.146

-.235

.146

-.034

.146

-.106

.146

-.129

.146

-.046

.146

.069

.146

-.o92

.146

-.025

.146

-.253

.146

-.o32

.146

-123

.146

.151

.146

-.154

.146

-.205

.146

-.182

.146

-.016

.146

-.o73

.146

-.112

.146

.322

.146

-.013

.146

.036

.146

.011

.146

r r-



Figure (4.28)

Sample Partial Autocorrelation Function for Non-Seasonal and Seasonal First
Difference Series of Production series for 2000 Kilo volt Ampere
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The sample ACF is tails off and the sample PACF cuts off after lag 1 because

none of the sample PACF values is significant expect thatlag6 and l l.
The suggested series (r-BL\4 might be described by SAR (l) process as a

tentative model for the series

(l-@81\Zt:0s * as

4.6.2 Parameter Estimation for SAR (1) model

Using SAR (1) model, the estimated parameters with their statistics were

shown in Table (4.43). According to this table, the estimated parameter of @ is 0.589,

since their p-value is 0.000, there is evidence to reject the null hypothesis: @ = 0.



Table (4.43)

Estimated Parameters and Model Statistics for SAR(I) Model of Production

Series for 2000 KVA

Estimate SE Sie.

Constant 23.470 1.1 18

t
20.99s 0.000

0.000@ 0.s89 0.t17 5.026
The following estimated model was obtained

(l-0.58981')2r: 23.470 * at

(0.177) (1.118)

The estimation of the SAR (1) model of production series for 2000 KVA give

0o = 23.470 with estimated standard error 1.118 and <D = 0.589 with the estimated

standard error 0.117. Under the null hypothesis H6: (D - 0 the test statistics t is 5.026

with p-value is 0.000. Hence, there is evidence to reject the null hypothesis.

Moreover, the sample ACFs and the sample PACFs of residual for the above

tentative model were shown in Table (4.44) and (a.45), respectively. They were

showed in Figure (4.29) and (a.30).

Table (4.44)

Estimated Autocorrelation Function of Residual for SAR (1) Model of

Production Series for 2000 KVA

Lagk 1 2 3 4 5 6 7 I I 10 '11 12

S.E .129 148 .169 .174 .177 .177 .178 .179 .179 .179 .179 .179

Lg-24 -.006 -.085 -.149 .068 -.010 .097 -.008 -.034 -.oo2 -.'133 .O27 -.039

S.E .181 .181 .181 .183 .184 .184 .185 .185 .185 .185 .186 .186



Figure (4.29)

sample Autocorrelation Function of Residual values for SAR(I) Model of

Production Series for 2000 KVA
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Table (4.45)

Estimated Partial Autocorrelation Function of Residual for sAR(l) Model of

Production Series for 2000 KVA

: 3456789 10 11 12Lagk 1 2

L-L2

S.E

L3-24

S.E

.129

.030

.129

.129

-.119

.129

.129

-.001

.129

.129

-.o77

.129

129

142

129

.332

.129

.o54

.129

-.073

.129

.196

.129

.069

.129

.065

"129

1 .11 "047

.129

.055

.129

-.240

.129

.008

.129

-.171

.129

-.192

.129

.129

-.101

.129



Figure (4.30)

Sample Partial Autocorrelation Function of Residual values for SAR (1) Model

of Production Series for 2000 KVA
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The Sample ACF was exponential decay and the sample PACF cuts off after lag

2 and these model exhibit a pattern.So, the residual series are not white noise process.

Since, another tentative seasonal ARIMA (1, l, 0) x(1.,L,0)p model considered, that

1S

( 1 -OBX1 -@B 12)( 
1 -BX I - 812) X r: p+a,

Using multiplicative seasonal ARIMA (1, l, 0) x (7,1,0)p model, the estimated

parameters with their statistics were shown in Table (4.46).

Table (4.46)

Estimated Parameters and Model Statistics for seasonal ARIMA (1, 1, 0) x

(1,1,0)p Model of Production for 2000 KVA

Estimate SE t Sie.

Constant -0.049 0.269
-0.669

-0.I 81

-6.077

-3.919

0.857

0.000

0.000
a 0.110
(D -0.s14 0.13 I

The following estimated model was obtained

( 1 -0.6698) (t -0.s I 4 B L2; 
1 t -e;1 t -r ") X r: -0.049+ a,

(0.110) (0.131) (0.26e)



According to Table (4.46), the estimated parameters of O and (D are -0.669 and,

-0.514, respectively. Since the p-value less than o : 0.05, the parameters values are

significant at 5Yo level.

4.6.3 Diagnostic Checking

To check model adequacy, in Table (4.47) and rable (4.4s) was shown the

residual ACF and PACF of the modified model. They were shown in Figure (4.31)

and (4.32), along with the confidence interval.

yn(a) + z{Elyu@))
Where,

{Elyu@r)J : +
",ln

Table (4.47)

Estimated Autocorrelation f,'unction of Residual for seasonal ARIMA (1, 11 0) x

(1,1,0)az Model of Production for 2000 KVA

Lagk 1 2 3 4 5 6 7 89'r0 11 12

L-12

S.E

L3-24

S.E

-.096

.146

.032

.173

-.085

.147

-.1 09

.173

.027

.148

-.075

.174

-.223

.150

-.1 96

.175

-.091

.157

.128

.180

-.038

.'t58

-.003

.182

-.183

.158

-.098

.182

.169

.167

-.028

.186

.134

.170

.046

.186

.064

.172

-.057

.186

-.115

.148

.009

.175

163

156

183

1

i



Figure (4.31)

Sample Autocorrelation Function of Residual values for seasonal ARIMA (1, lr 0)

x (1,1,0)12 Model of Production for 2000 KVA
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Table (4.48)

Estimated Partial Autocorrelation Function of Residual for seasonal ARIMA
(1, 1,0) x (1,1,0)2 Model of Production for 2000 KVA

Lagk 1 2 3 4 5 6 t B 9 10 11 12

L-72

s.E

13-24

s.E

-.096

.146

"oo7

.146

-.095

.146

-.070

.146

.009

.146

-.012

.146

-.122

.146

.072

.146

-.252

.'146

-.078

.146

-.186

.146

.196

.146

-.143

.146

.035

.146

-.308

.146

-.137

.146

-.033

.146

.053

.146

.017

.146

-.160

.146

.098

.146

.o52

.146

.035

.146

-.059

.146



I Figure (4.32)

Sample Partial Autocorrelation Function of Residual values for seasonal ARIMA
(I, 1, 0) x (1,a,0)12Model of production for 2000 KVA
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values of the residual ACF of seasonal ARIMA (1, 1, 0) x (1,1,0)pare all
small and exhibit no patterns. And, the values of residual PACF of modified model lie

inside the confidence limits except atlag 8. This suggested that this model adequate.

Hence, the autocorrelation of es canbe taken as significant different from zero.

An overall check is performed by using the test statistic,

Q:nZfr=ryt(6r)
As the result of p value, the observed value of Q is 17.322 and it is not

significant at 5 o/o significant level p-value is 0.365

Thus, the fitted seasonal AzuMA (1, 1,0) x(1,7,0)pmodel is judged adequate

for the series.

4.7 Forecasting

The models of the production series for 100 Kilo Volt Ampere, 160 Kilo Volt
Ampere ,400 Kilo Volt Ampere and 2000 Kilo Volt Ampere have been identified,

estimated and checked for adequacy. The accepted models will be used to forecast the

values for January to December of 2018.



Production Series for 100 KiIo YoIt Ampere

Since the model seasonal ARIMA (1, 0, 0) x (1,1,0)rz is adequate, this model

can be used to forecast the future value for production of 100 KVA.

The forecasts for January to December, 2018 are as shown in Table (4.49)

Table (4.49\

The tr'orecast forJanuary to Decemberr 2018 of Production Series for 100 KVA

Jan 26 May 38 sep 36

Feb
Mar

32
30

Jun 42
Ju1

0ct 45
Nov 45i5

Apr JJ Aug 39

t!

.t'

Dec 42

Figure (4.33)

The Actual, Fitted and X'oreeast Yalues with 95% Confidence Limits for the

Number of Production Series for I00 KVA
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Production Series for 160 Kilo Volt Ampere

Since the model seasonal ARIMA (1, 0, 0) x (1,1,0)rz is adequate, this model

can be used to forecast the future value for production of 160 KYA.

The forecasts for January to December, 2018 are as shown in Table (4.50)



Table (4.50)

The X'orecast for Janualy to Ilecemberr 20lS of Production Series for 160 KVA

Jan aa
JJ May 31 Sep 32

Feb 34 Jun 3t Oct 37
Mar 29 Jul 3t Nov 34
Apr JJ Aug 3t Dec 36

Figure (434)

The Actnal, Fitted and Forecast Yalues with g57o Confidence Limits for the

Number of Production Series for 160 KVA
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Production Series for 400 KiIo Volt Ampere

Since the model seasonal ARIMA (1, 0, 0) x (0,1,0)r, is adequate, this model

can be used to forecast the fuhne value for production of 400 KVA.

The forecasts for January to December, 2018 are as shown in Table ( 4.51)

Table ( 4.51)

The Forecast forJanuary to Decemher,2018 of Production Series for 400 KVA

Jan 23 May 39 sep 40
Feb 35 Jun 4t Oct 4l
Mar 32 Jul 37 Nov 45
Apr aa

JJ Aug 35 Dec 39



Figure (4.35)

The Actualo Fitted and Forecast Yalues with 95Yo Conlidence Limits for the

Number of Production Series for 400 KVA
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Production Series for 2000 Kilo VoIt Ampere

Since the model seasonal ARIMA (1, 1, 0) x (1,1,0)tz is adequate, this model

can be used to forecast the future value for production of 2000 KvA.

The forecasts for January to December, 2018 are as shown in Table {4.52)

'Table (4.52)

The Forecast for January to Decemberr 2018 of Production Series for 2000 KVA

Jan ./-) May Sep 29

Feb 23 Jun 27 Oct 28

Mar 25 Jul 24 Nov 35

Apr 25 Aug 25 Dec 30

27



Figure (4.36)

The Actual, Fitted and Forecast Values with g5% Confideuce Limits for the

Nurnber of Production Series for 2000 KVA
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CHAPTER V

CONCLUSION

In this thesis, the basic statistical characteristics of some monthly production

series of transformers such as 100 Kilo Volt Ampere,160 Kilo Volt Ampere,400 Kilo

Volt Ampere, 2000 Kilo Volt Ampere series and the model building procedures for

these series have been presented.

Many time series data have important seasonal components and it is nece/sary

to measure the seasonal variation. In time series analysis, one study the four

components: trend, seasonal, cyclical and random existed in the time series model.

One may test the seasonality for these data by using the ANOVA Table. Trend and

cyclical components are represented by deterministic time functions, seasonal

component of seasonal indexes and random components by its statistical properties.

The number of production series are gradually increasing during the period of

5 years (from studying period 2Ol3 to 2017).It is found that the total number of

production increased during winter seasons such as October, November and

December.

A seasonal index may be computed for the purpose of studying the seasonal

movement itself the objective being to avoid or minimize the consequences of the

seasonal changes, in order to smooth out the seasonal fluctuations. In this thesis, the

Ratio to Moving Average Method is used to measure the seasonal index. From

production series for 100 KVA, it has been found that the lowest value of seasonal

index occurs in September and the highest value of seasonal index are observed in

November. From production series for 160 KVA, it has been found that the lowest

value of seasonal index occurs in August and the highest value of seasonal index are

observed in December. From production series for 400 KVA, it has been found that

the lowest value of seasonal index occurs in September and the highest value of

seasonal index are observed in November. From production series for 2000 KVA, it

has been found that the lowest value of seasonal index occurs in August and the

highest value of seasonal index are observed in November.

In addition, the Box- Jenkins method was utilized in modelling and forecasting

the number of production series of transformers. The multiplicative seasonal ARIMA

(1, 0, 0) x (1,1,0)12 , ARIMA (1, 0, 0) x (0,1,0)p wrd ARIMA (1, l, 0) x (1,1,0)12

models were found to be adequate for the observed data series.

'i



Based on the best fiued model, monthly production series for transformers are
forecasted for future periods of 2018. The forecast value obtained by using fitted
model was generally considered to be reliable. So, the forecast values can be applied
in a variety of future planning pulpose which are important for the production of
transformers in HISEM Co., Ltd. Finally, it is recoflrmended that measuring seasonal

variation, seasonal model buitding and forecasting should be updated regularly in
order to give better estimates or forecasts for the number of production.
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Appendix A

Jan

Feb

March
Apr

2016
25

29
26
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30
36

31

40
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38

20t6
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23

26

22

t9
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19
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23
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2017
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30
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34
38

28
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JJ

4t
40
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2017

26

24

30
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39

28

40
JZ
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40
38

Production Series for 100 KVA(2013 -2017)

Month
Jan

Oct
Nov

lAp.
May
Jun
Jul
Arg
Sep

20
22
24
2t
24
t9
t9
22

t9
22
23

26

eb

Sources: Hitachi Soe Electric and Machinery Co., Ltd

Production Series for 160 KVA(2013 -2017)

Month 2013 2014

2013 2014
26
30
aa
JJ

25

22
28
27
26
23

30
34
28

20Ls

38

39

35

31

36

35

30

34

31

36

38

42

2015

Sep

Oct

18

t2
l7
t7
t7
18

t4
t3
15

t9
20
T9

20
27

30
20
22
27
23

2T

t6
28
30
37

2t
25

22

26

25

30

25

30

J4

28

35

30

May
Jun

Jul

OV

Sources : Hitachi Soe Electric and Machinery Co., Ltd



Production Series for 400 KVA(2013 -2017)

Month 20t3 20r4 2015
lJan

ln"u
lMarch

lApr
Mav
Jun

Jul
Aug
Sep

Oct
Nov
Dec

18

29
23

18

15

13

T7

t2
14

27
29

30

23

25

25

19

25

25

25

22

20
27

29
25

24
29
JJ

25
1)

28

22

29
22

30

34

30

25

29
26
29

34

38

30

35

32

38

40
38

20t6
23

20
25

22
27
23

23

24
26
28
35

30

2016 20t7
22

)Z

29
30
36

38

34

)./.

3t
38

42
36

2011

2t
25

22

26

25

30

23

25

3/_

28

35

30

Sources: Hitachi Soe Electric and Machinery Co., Ltd

Production Series for 2000 KVA(2013 -2011)

Month 20r3 2014 2015
Jan

Feb
March
Apt
May
Jun
Jul
Aug
Sep

Oct
Nov
Dec

I9
20
T7

t9
l7
15

18

10

15

22

25

27

29

22

18

./.)

20

2l
t9
20
22

24

36

22

22

t9
26
2l
28

z3
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24
26

29

3Z

28

Sources: Hitachi Soe Electric and Machinery Co., Ltd
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